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Abstract

Local explanation methods highlight the input tokens that have
a considerable impact on the outcome of classifying the doc-
ument at hand. For example, the Anchor algorithm applies a
statistical analysis of the sensitivity of the classifier to changes
in the tokens. Aggregating local explanations over a dataset
provides a global explanation of the model. Such aggregation
aims to detect words with the most impact, giving valuable
insights about the model, like what it has learned in training
and which adversarial examples expose its weaknesses. How-
ever, standard aggregation methods bear a high computational
cost: a naı̈ve implementation applies a costly algorithm to
each token of each document, and hence, it is infeasible for a
simple user running in the scope of a short analysis session.
We devise techniques for accelerating the global aggregation
of the Anchor algorithm. Specifically, our goal is to compute
a set of top-k words with the highest global impact according
to different aggregation functions. Some of our techniques are
lossless and some are lossy. We show that for a very mild loss
of quality, we are able to accelerate the computation by up
to 30×, reducing the computation from hours to minutes. We
also devise and study a probabilistic model that accounts for
noise in the Anchor algorithm and diminishes the bias toward
words that are frequent yet low in impact.

1 Introduction
A particular paradigm for local explanations consists of algo-
rithms that compute a numeric estimate of each token’s contri-
bution to the decision of the model, also known as input attri-
bution (Danilevsky et al. 2020a). Many of the common tech-
niques are computationally intensive. For instance, the score
that Anchor (Ribeiro, Singh, and Guestrin 2018) assigns to a
token is the probability that the model keeps its decision in-
tact when the document undergoes random perturbations, as
long as the token remains unchanged. LIME (Ribeiro, Singh,
and Guestrin 2016) derives a linear bag-of-words predictor
of the model’s outcome in a small area around the document
and scores each token by its learned coefficient. The SHAP
score (Lundberg and Lee 2017) views the tokens as players
in the cooperative game of forming the model’s decision, and
applies the well-known Shapley value to attribute a portion
of the profit to each player. As a running illustration, Figure 1
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My daughter got
this for christmas
and loves it!

...
Great service and
shipping. Thank you.
Because of you I
had less stress for
christmas

Document collection:
spam detection over
Amazon toy reviews

Top-10 terms: ◦ great ◦ love
◦ game ◦ fun ◦ christmas
◦ friends ◦ grandson
◦ family ◦ favorite ◦ enjoy

Quality as a function of time (sec)
for sum (—), avg (—), our (—)

Figure 1: Left: local explanations in a collection of docu-
ments for a spam detection task. Top-right: top-10 terms
resulting from the global aggregation of (local) anchors.
Bottom-right: global aggregation quality; our approach leads
to higher quality at a fraction of the computation time.

shows documents from a spam-detection task of Amazon
reviews on toys and games, with words marked as anchors,
meaning that their score by Anchor exceeds a threshold.

In turn, an approach to global explanation is the aggrega-
tion of the attribution scores computed by methods as the
aforementioned, intended to quantify the impact of each term
on the model (Arras et al. 2016). More precisely, we begin
with a set of instances to classify (e.g., the training set or the
test set of a learning setup), compute a score for each token,
and then estimate the impact of every word by aggregating
the scores that it obtained in its occurrence in documents.
Figure 1 shows top-10 impactful words based on the anchors;
to illustrate an insight, “Christmas” is one of the most impact-
ful terms that encourage the model (Bert, Devlin et al. 2018)
to classify a document as spam. Like any form of a global
explanation, we would like it to be used effectively by users
of varying skills to gain valuable insights on the model: what
it learned in training, which biases it has towards specific
phrases, which adversarial examples can shed light on possi-
ble weaknesses, and so on. For instantiation, we would like
to present the top-k impactful terms in online analysis frame-
works such as the FIND system (Lertvittayakumjorn, Specia,
and Toni 2020) that provides attribution-based insights.



Yet, the global aggregation of a local attribution, like the
above ones, entails critical challenges since the latter is de-
signed to explain a single decision by the model. For one,
how exactly should we aggregate the scores? The local scores
are inherently noisy, and so, if we simply sum up the scores
of all occurrences, we end up giving an advantage to frequent
words that are irrelevant to the model (e.g., a function word
like “the” is likely to receive enough noisy scores that sum
up to a high global score). If we normalize by the number of
occurrences, then we promote rare terms that matter only in
insignificant cases (e.g., a word that only appeared once in the
dataset would be scored highly). Either way, the aggregation
falls short of the expectation to explain the model.

Another major challenge, regardless of which aggregation
is used, is the computational cost. The statistical approaches
are arguably designed to be practical as local explanations,
where we wish to provide an online answer for a single in-
stance; yet, global aggregation should, in principle, apply
the costly computation to every token of every document.
For instance, a direct application of the release of Anchor
on a collection of 10k documents took us almost two days,
which were shortened to more than an hour after code opti-
mizations. Again, such performance casts the usage of global
aggregation as ineffective for online analysis pipelines.

We focus on the global aggregation of the Anchor explana-
tions and tackle the above challenges by making the following
contributions. First, we design a probabilistic model that tar-
gets the importance of words as explanations and, at the same
time, accounts for noise and irrelevant occurrences. Second,
we develop several optimizations of global aggregation over
Anchor towards an effective implementation. Some of the
optimizations are specific to Anchor, while others apply to
every global aggregation of contribution scores. Specifically,
we design an anytime algorithm that maintains a set of top-k
candidates, and approaches the top score after a fraction of
the naı̈ve time, with an improvement of up to 30x. Third, we
design and conduct an experimental study that shows the ef-
fectiveness of our solutions. For that, we adapt the evaluation
method of Guidotti et al. (2018) to the task of top-k impactful
terms. This is illustrated in Figure 1: after a few seconds, our
anytime algorithm produced a set of words that outperforms
mere sum and average (that terminate in ten minutes).

Related work. The local attribution scores we discussed
fall in the category of perturbation-based explanations (An-
chor) or simplification-based explanations (LIME, SHAP).
An earlier perturbation-based explanation is occlusion (Zeiler
and Fergus 2014). Another common category is gradient-
based explanations, such as Saliency (Simonyan, Vedaldi,
and Zisserman 2014), InputXGradient (Shrikumar et al.
2016), and others (Pruthi et al. 2020; Sundararajan, Taly,
and Yan 2017); these assume white-box access to the model,
while perturbation-based methods can operate with any
model in a black-box manner. See Atanasova et al. (2020) for
a comparative analysis. Other scores are derived from an at-
tention mechanism incorporated in the model (Lu et al. 2019;
Xie et al. 2017). Layer-wise Relevance Propagation (LRP)
extracts from the network a linear model where, similarly to
LIME, the coefficients are used as scores (Arras et al. 2016).

Aggregation of local attributions was studied by Ebert,
Jakobovits, and Filippova (2022), who applied aggregation to
the gradient-based local attribution of Bastings et al. (2022).
Aggregation of LRP was done by Lertvittayakumjorn, Spe-
cia, and Toni (2020) and Gholizadeh and Zhou (2021). These
publications focused on representing the whole space of local
attributions (e.g., via clustering, word clouds, and represen-
tative embeddings), and did not focus on the challenge of
execution cost. Later in the paper, we refer to work on the
aggregation of LIME scores (Ribeiro, Singh, and Guestrin
2016; van der Linden, Haned, and Kanoulas 2019) that also
did not focus on the computational aspects.

Token scoring is one of a plethora of explanation forms
proposed for machine-learning models. Other popular ap-
proaches derive from the original model different kinds of
insights such as nearby interpretable (or surrogate) mod-
els, deterministic rules, and examples that highlight nuances
of the model. These can be found in relevant surveys such
as Guidotti et al. (2019), Danilevsky et al. (2020b) and
Atanasova et al. (2020), to name a few.

2 Formal Setup
A document d is a finite sequence w1, . . . , wm of words. For
i = 1, . . . ,m, we call the pair (wi, i) a token of d. By a slight
abuse of notation, we may identify d with its set of tokens;
hence, (w, i) ∈ d means that the i’th word of d is w. We
denote by D the set of all documents. By a predictor we refer
to any function f : D→ C that maps documents to some do-
main C. In particular, a binary classifier is a predictor where
C = {0, 1}. In our evaluation, we will make the (conven-
tional) assumption that f(d) is the most likely class according
to an associated probability function f̂ : D×C → [0, 1] that
defines a distribution over C for each document d.

Anchors. The anchor concept has been defined for gen-
eral modalities and “predicates” (properties of the input in-
stance) that can take the role of an explanation of a predic-
tion (Ribeiro, Singh, and Guestrin 2018). We define it in the
textual domain where the predicates are token memberships.

We assume that every document d is associated with a
perturbator, which is a distribution ∆d over D. We later
discuss the actual perturbation used in the public anchor
implementation. We also assume a numerical threshold τ ∈
[0, 1]. Let f be a predictor, and let (w, i) ∈ d be a token of d.
We say that (w, i) is an anchor (of d w.r.t. f ) if

Prx∼∆d
[f(x) = f(d) | (w, i) ∈ x] ≥ τ . (1)

In words, (w, i) is an anchor if the document retains the same
prediction under perturbation, with high probability, as long
as the word w is kept at the ith position in the perturbation.
This probability is referred to as the precision of (w, i). We
denote by Anc(d) the set of anchors of a document d.

The algorithm uses a Masked Language Model (MLM) as
the perturbator of d. Samples from D are created by masking
tokens of d, and later unmasking using DistilBert (Sanh et al.
2019). The output of the MLM on a masked (w, i) is a distri-
bution of words that can fit the mask. Out of the ζ (500 here)
words with the highest probability, a word is sampled accord-
ing to its probability. If there are multiple masks, then the
process repeats iteratively until all replacements are applied.



Global aggregation. Let S be a finite collection of doc-
uments, and let f : D → C be a predictor that we wish
to explore in the context of S. (For instance, S can be the
training set that is used for the construction of f .) We denote
by W (S) the set of words that occur in S. By global aggre-
gation we refer to any numerical function G that maps every
word w ∈W (S) and c ∈ C to a number G(w, c). Intuitively,
high G(w, c) means that w has high impact on f taking the
value of c on a given document. We denote by S[c] the col-
lection of documents in S classified as c. We also denote
by A+(w, c) and A−(w, c) the number of occurrences of a
word w ∈W (S) where w is considered an anchor for c and
a non-anchor for c, respectively:

A+(w, c)
def
=
∑

d∈S[c]

|{i | (w, i) ∈ Anc(d)}| (2)

A−(w, c)
def
=
∑

d∈S[c]

|{i | (w, i) ∈ d \ Anc(d)}| (3)

Ribeiro, Singh, and Guestrin (2016) proposed the function:

Gsq(w, c)
def
=
√
A+(w, c) (4)

Several aggregations have been proposed by van der Lin-
den, Haned, and Kanoulas (2019). The one that performed
best on binary classification is the Global Average Impor-
tance that, in our context, is normalizing A+(w, c) by the
number occurrences of w:

Gav(w, c)
def
=

A+(w, c)

A+(w, c) +A−(w, c)
(5)

Note that Gav(w, c) does not distinguish between rare words
that occur as anchors and words that are frequently anchors.
In fact, the maximal score is obtained by a word that occurs
once, and in that occurrence, it is an anchor. On the other
hand, Gsq(w, c) is sensitive to the noise of the anchor algo-
rithm since it rewards frequent words (e.g., stop words) that
are occasionally identified as anchors.

Another aggregation that van der Linden, Haned, and
Kanoulas (2019) proposed is Gh(w, c), which weighs a word
by its score for different classes. The idea is that the multiplic-
ity of classes entails a penalty since it indicates low relevance
to the specific class. Let h̃(w, c) be the normalized Gsq(w, c),
that is, h̃(w, c)

def
= Gsq(w, c)/

∑
c′∈C Gsq(w, c′). Note that

h̃(w, c) can be viewed as a distribution of w’s importance
across the classes. The Shannon entropy of this distribution
is Hw

def
= −

∑
c∈C h̃(w, c) log

(
h̃(w, c)

)
. Low Hw implies

that w impacts a specific class. Let Hmin and Hmax be the
minimum and maximum Hw′ across all words w′. Since
rare words might occur in a specific class (thus having low
entropy), Gh is defined using Hw and Gsq as follows:

Gh(w, c)
def
=

(
1− Hw −Hmin

Hmax −Hmin

)
Gsq(w, c) (6)

Hence, a high entropy will have a low factor over Gsq, and
rare words will have low Gsq, both resulting in low Gh.

While Gh(w, c) aims to address the problems of Gav(w, c)
and Gsq, we have found that anchors commonly appear in at

most one class, thus the entropy is very low for most words to
begin with. In Section 3, we will propose a new aggregation
that aims to overcome these weaknesses.

Problem definition: top-k terms. We consider the follow-
ing computational task. We have a set S of documents, a
predictor f , an aggregation function G for anchors, and a
number k. The goal is to find, for a given class c of f , a set
Tc of k words in W (S) with maximal G(w, c). We will refer
to these words as the top terms. While we wish to find Tc
in interactive time, a naive aggregation can be prohibitively
slow. We might be willing to settle for an approximation, that
is, a set T ′c of k words has similar quality compared to Tc.
Next, we discuss how this quality can be measured.

For evaluating global aggregations, van der Linden, Haned,
and Kanoulas (2019) proposed AOPCglobal that adapts the
Area Over the Perturbation Curve of Samek et al. (2015).
The idea is to measure how removal of high-score terms
impacts the model’s predictions. In our terms, AOPCglobal is
calculated on an aggregation G by progressively removing
from each document the top-k terms w in that document by
decreasing G(w, c). A curve shows a better performance than
another if it is higher and its initial slope is steeper (indicating
better identification of the top influencing terms).

Our goal is to measure the quality of the set Tc of top-
k terms. Hence, in our experiments, we adapt AOPCglobal

so that we remove from each document d only the terms in
Tc; in particular, documents that do not intersect with Tc
remain unchanged (in contrast to AOPCglobal that removes k
terms from each document). Formally, let f : D → C be a
predictor, c ∈ C a class, and Tc the set of top-k terms found
by the aggregation G and a class c. Let w1, . . . , wk be the
words in Tc ordered by decreasing G(·, c). For a document
d, let di be the document d with every occurrence of a word
from w1, . . . , wk removed. We define

AOPCk(G, c) def
=

1

k + 1
· avg
d∈S[c]

( k∑
i=1

f̂(d, c)−f̂(di, c)
)

(7)

where f̂ is the probability that the classification model of f
assigns to c for the document d. In words, AOPCk(G, c) is
the average drop in the probability of the class c, over all
documents and prefixes of Tc.

3 Probability-Based Global Aggregation
Consider a document collection S, a predictor f : D→ C,
and a class c ∈ C. Let d = (w1, . . . , w`) be a document in
S[c]. We consider a simple generative model that produces
a random document Xd = (w′1, . . . , w

′
`) of the same length

as d, assuming that each word is generated randomly, yet
anchor words and non-anchor words are taken from different
distributions. More precisely, each w′i is selected randomly
and independently using the following process:

• If (wi, i) ∈ Anc(d), then do as follows. With probability
α, select a word w ∈W (S) with the anchor probability
q(w, c); with probability 1−α (that the anchor is wrong),
select a word w from W (S) with the probability p(w, c).

• Otherwise, select w ∈W (S) with probability p(w, c).



Here, α is a parameter. The probabilities p(w, c) and q(w, c)
are unknown and chosen to maximize the probability of S:

(p∗, q∗)
def
= argmax

p,q

( ∏
d∈S[c]

Pr[d = Xd]
)

(8)

Intuitively, words w with high q∗(w, c) are likely to be
used as anchors but not necessarily as non-anchors. Hence,
we use q∗ as our global aggregation:

Gpr(w, c)
def
= q∗(w, c) (9)

We estimate q∗ and p∗ via Maximum Likelihood Esti-
mation using Lagrange multipliers (Sargent 2000) for local
maxima. See the long version of this paper (Mor, Belinkov,
and Kimelfeld 2023). The resulting estimations q̃ and p̃ are
as follows. Recall that α is a parameter, and recall A+(w, c)
and A−(w′, c) from Equations (2) and (3), respectively.

q̃(w, c) =
1

α
· A+(w, c)

Σw′A+(w′, c)
− (

1

α
− 1) · A−(w, c)

Σw′A−(w′, c)

p̃(w, c) =
A−(w, c)

Σw′A−(w′, c)
(10)

The resulting q̃ is not necessarily the equal q∗ since it is
not necessarily positive. To get a probability (which may be
different from q∗), we apply Laplace smoothing (Chen and
Goodman 1999) with the absolute minimum value of q̃ as
the smoothing parameter. Let qmin

def
= minw∈W (S[c]) q̃(w, c)

and L(g, β) be the Laplace smoothing over the function g
with a smoothing parameter β. We then define q̃∗(w, c) =
L(q̃, |qmin|) and p̃∗(w, c) = p̃(w, c). Laplace smoothing is
monotone, thus it preserves word ordering: q̃∗(w1, c) ≥
q̃∗(w2, c) whenever q̃(w1, c) ≥ q̃(w2, c).

4 Runtime Optimizations
In this section, we propose algorithms and optimization tech-
niques for accelerating the computation of the top-k terms.

4.1 Incremental Evaluation (Anytime)
Our goal is to retrieve the top-k words in the dataset. Thus, we
adopt an incremental evaluation that maintains the best top-k
found in each step of the algorithm. This allows us to provide
the user with informative early results in a pay-as-you-go
(anytime) manner. Yet, some of the scores are not known dur-
ing the computation, since they may require the processing
of the entire dataset. Hence, we use a heuristic pseudo-score
G̃(w, c) instead of each exact aggregation G(w, c).

We traverse the documents in a predefined order (that we
discuss next). Denote the word with the lowest pseudo-score
in the top-k group as wmin. A word w enters the top-k group
if G̃(w, c) > G̃(wmin, c). Since the results of the anchor algo-
rithm are unknown for all documents during its running, the
pseudo-score when reaching document di is calculated with
respect to only the first i documents. Specifically, denote by
A+

i (w, c) and A−i (w, c) the values A+(w, c) and A−(w, c),
respectively, restricted to the first i documents in S[c]. For
Gsq,Gav and Gh, the pseudo-score is calculated simply by
replacing A with Ai in the definitions. In the case of Gpr, we

use the estimates q̃ and p̃ of Equation (10) and, again, apply
the replacement of A with Ai. As for the order, we traversed
the documents by descending confidence of the classification,
assuming that these encourage anchors early on. (We also
tried other orders and got similar results.)

Candidate filtering. By utilizing the maintained set of top
candidates, we can avoid the expensive computation for an un-
likely candidate, by applying an optimistic, fast-to-compute
upper bound on its score: a word is filtered out if its upper
bound is lower than the minimal pseudo-score in the current
set of candidates. The upper bound for a word w considers
the occurrences (w, i) of the word in the remaining docu-
ments d, and it is the pseudo-score under the assumption that
(w, i) ∈ Anc(d) for every such d and i. While this bound
might appear optimistic, this optimization accounts for 30%-
40% reduction of the computation’s running time.

4.2 Accelerating Anchor
Recall that a major challenge in computing the top terms
is the expensive computation of anchors, as discussed in
Section 2. Yet, we are interested in an aggregation over many
applications of the Anchor algorithm, and so, we might settle
for lower accuracy and confidence. Hence, we change the
hyperparameters of the Anchor algorithm, as follows.

Masking. Recall that Anchor generates documents by
masking words in the instance and filling them using a Dis-
tilBert MLM model. Each mask is filled out of 500 MLM
suggestions. We observed that decreasing this number (to just
50 in our experiments) reduced the execution cost without
harming the quality, and sometimes even improving it.

Anchor precision and confidence. The precision thresh-
old τ of Equation (1) determines the number of documents
that we sample using the replacement alternatives produced
by the masking. During runtime, we reduce τ for a word to
reflect its past occurrences as an anchor. Consequently, we
generate fewer documents to decide whether the word is an
anchor. Instead of τ , we use

τ̃(w, c) = τ − ω · G̃pr(w, c)/Nw (11)

where Nw is the number of occurrences of w in the dataset,
and ω is a hyperparameter. We use ω = 0.4 in our experi-
ments so that τ̃(w, c) does cannot get below 0.55.

In addition, the anchor implementation by Ribeiro, Singh,
and Guestrin (2018) estimates, for each anchor candidate
w, a confidence score that the inequality of Equation (1) is
correct. To be an anchor, this confidence needs to exceed
1− δ. Higher values of δ lead to a reduction in the number of
needed samples. Hence, since we aggregate results, we can
settle for higher values of δ.

4.3 Additional Optimizations
In addition to the optimizations described in this section, we
applied several accelerations that are fairly straightforward
and standard. First, we filtered out stop-words from the set of
top-term candidates, as we perceive them as non-informative
terms regarding the explanation of the model. We also filtered
out rare words, where we defined a word to be rare if it occurs



Figure 2: AOPCk(G, c) of different aggregation functions G (y-axis) for varying k (x-axis).

Figure 3: AOPCk(G, c) for different versions G of Gpr and k = 20, as a function of the computation time. “Optimized” refers to
the combination of all optimizations described in Section 4.

fewer times than some threshold (5 in our experiments). Our
experiments confirm that this filtering provides considerable
acceleration for negligible loss of quality. Finally, we also
experiment with the application of the entire algorithm on a
sample of the documents rather than the entire training set.

5 Experiments and Results
In our experimental study, we aim to understand the effective-
ness of the aggregations and optimizations that we proposed.
More precisely, we investigate, empirically, how well and
how fast each alternative finds top-k terms. The code and
data are available at https://github.com/alonm16/anchor.

5.1 Setup
We find the top-k terms for several classification tasks. We
use k = 20. In each task, the documents are organized into
three collections: training, validation, and test. The predictor
f is a classifier trained on the training set, chosen as the model
checkpoint with the best validation set accuracy. We experi-
mented with three models: logistic regression, Bert (Devlin
et al. 2018), and DeBERTa (He et al. 2020). We report the
results only for DeBERTa; the other two behave similarly
and are discussed in the long version (Mor, Belinkov, and
Kimelfeld 2023). The set S of documents that we aggregate
over (as described in Section 2) is the test set, as experimented
in van der Linden, Haned, and Kanoulas (2019).

All experiments were conducted on a machine with 96
of Intel Xeon Gold 6336Y 2.40GHz CPUs with 24 cores,
512GB RAM, 8 of 50GB Nvidia A40 GPUs running Ubuntu

20.04 LTS. The algorithms were programmed in Python 3.10
with the libraries CUDA 11.6, PyTorch 2.0, and Numpy 1.23.

Classification tasks. We restricted each dataset to docu-
ments of at most 200 characters, since the influence of each
token on a longer text diminishes, and we got fewer anchors
and less meaningful results.1 We used the following tasks
from Kaggle. URL references to the tasks can be found in
the long version (Mor, Belinkov, and Kimelfeld 2023).

Coronavirus tweets (sentiment). Tweets classified into five
sentiments: extremely negative, negative, neutral, positive,
and extremely positive. We combined extremely negative
and negative, and extremely positive and positive since there
were too few anchors that distinguish between the extreme
and normal classes. The dataset consists of 16,000, 4200, and
12,500 documents (training, validation, test).

The Social Dilemma tweets (sentiment). Tweets classified
into three sentiments: positive, negative, and neutral. The
dataset consists of 3200, 1000, and 3000 documents.

Amazon reviews: Toys & Games (spam). Amazon product
reviews in the Toy and Games category. The reviews are
classified into spam and non-spam. The dataset consists of
15,000, 3800, and 11,000 documents.

Amazon reviews: Home & Kitchen (spam). Similar to the
previous one, but now in the category Home and Kitchen.
The dataset consists of 12,000, 3000, and 9000 documents.

1The length bound also influences the execution cost; our exper-
iments show that the runtime grows linearly with this bound.



Figure 4: AOPCk(G, c) for different optimizations of Gpr and k = 20, as a function of the computation time. “Optimized” refers
to the combination of all optimizations.

Figure 5: Ratio of shared terms for different versions of Gpr.

Compared Aggregations. We compare the aggregation
functions of Sections 2 and 3, and the optimized versions of
Section 4. The list of functions includes Gsq (Equation (4)),
Gav (Equation (5)), Gh (Equation (6)), and Gpr (Equation (9))
with α = 0.5. As for Gav, we also experiment with a quick fix
of its weakness of promoting rare words: the function G+5

ave
is the same as Gav, except that every word is filtered out if it
has fewer than five occurrences in the training set.

As baselines, we use two aggregations G(w, c). The first
ignores the Anchor algorithm and simply measures the prob-
ability of class c among the documents that include w.

Gbase(w, c)
def
=
|{d ∈ S[c] | w ∈ d}|
|{d ∈ S | w ∈ d}|

(12)

(Formally, w ∈ d means (w, i) ∈ d for some i.) The second
is G−1

pr
def
= 1/Gpr, the inverse of Gpr, used as a sanity check.

5.2 Results
Figure 2 shows the results for the aggregation functions. Each
box corresponds to one task and one class c, and it shows
AOPCk(G, c) for the top terms at different times. Each line
includes a shaded error band based on repetitions with 5
seeds. Observe that Gpr consistently begins with the steepest
curve, and its overall height exceeds the baselines. Also note
that Gav is inferior to the rest. In contrast, Gsq and Gh perform
similarly to Gpr. While so, in Section 5.3 we inspect the three
in several case studies, and argue that the results of Gpr are
more useful, even though it is not captured by AOPCk.

Figures 3 and 4 show the quality of Tc when applying the
aggregation in an anytime manner. We measure the quality

of the set of k candidates at different times during the compu-
tation, until completion. Hence, each chart shows the change
of AOPCk over time as well as the total running time.

Figure 3 shows that increasing δ improves both the running
time and quality of Gpr. An exception is “dilemma +” where
we get reduced runtime but a slight decrease in quality. This
suggests that the aggregation compensates for the reduction
in confidence (number of samples) for the Anchor algorithm.
It also confirms the conjecture that the default value of δ,
namely 0.1, is too strict within aggregation. Combining the
remaining optimizations shortens the overall running time;
while it reduced the quality in the “corona +” experiment, it
generally did not impair and sometimes improved the quality
(e.g., “corona -” and “home-spam -/+”). This experiment
shows that, overall, the optimizations are highly beneficial.

Figure 4 shows that each optimization alone accelerates
the computation. The confidence optimization (Equation (11)
in Section 4.2) incurs the most significant reduction in quality.
In contrast, the masking optimization (Section 4.2) consis-
tently improves the overall quality. Applying all optimiza-
tions together yields the shortest running time, but generally
at the cost of lowering the AOPCk scores (with the exception
of “corona -” where the impact on the score is positive).

In Figure 5, we measure the percentage of shared terms
between Tc of Gpr to that of its optimizations. The intersection
is generally around 80%. Note that a drop in the intersection
does not necessarily imply a drop in quality, since different
terms can have similar quality (as shown in Figures 3 and 4).



toy-spam - toy-spam +

small, broke, disappointed,
waste, would, smaller, cheap,
thought, money, poor

great, love, loves, fun, fa-
vorite, awesome, wonderful,
loved, classic, perfect

Table 1: Top-10 terms: negative vs. positive (no stop words).

toy-spam -

Gpr: not, but, disappoint-
ment, broke, small, it, would,
waste, only, price

Gav: narrower, tipping,
expanding, mouths, stains,
tone, files, obscure, faint,
health

Gsq: not, but, it, the, disap-
pointment, to, this, broke,
was, small

home-spam +

Gpr: great, love, best, excel-
lent, perfect, loves, wonder-
ful, happy, pleased, good

Gav: castle, boys, visited,
wars, kumar, vibrant, laven-
der, implement, farewell,
silky

Gsq: great, love, best, good,
and, my, I, perfect, loves,
ever

Table 2: Comparing different aggregations of the toy-spam
and home-spam datasets.

5.3 Case Studies
We now discuss several case studies from our experiments.
Table 1 shows the top terms for the toy-spam dataset un-
der Gpr. We can see that terms for spam reviews are mostly
positive (promoting products). On the other hand, non-spam
reviews use more negative adjectives and commonly include
customer complaints. (As an exception, “thought” occurs in
non-spams in 80% of the cases, and is typically used nega-
tively to describe disappointment from a product.)

Table 2 shows the results for the toy-spam (negative)
and home-spam (positive) datasets. We can see that Gsq has
many common insignificant words, such as “my,” “it,” “and,”
“the,” and so on. The function Gav selects rare words such as
“mouths,” “files,” “visited,” and “wars.” The function Gpr is
balanced and selects different terms such as “wonderful” and
“happy” (as positives) or “broke” and “waste” (as negatives).

Table 3 shows the top terms of the corona dataset for Gpr
and Gsq, each with its position for the other aggregation. We
can see, for example, that indices of common words like
“corona” and “19” are dropped for Gpr, while less common
words that appeared more as anchors stay at the top. As
insights on the dataset, the reader can see that “hand” and
“help” are significant to the positive class, where the former
is typically used in the context of hand sanitizing.

Gpr: hand, like, help, good, safe, please, thank, great (0-7), free
(9), support (11), thanks (12), well (13), best (15), positive (18),
better (21), care (20), love (22), safety (25), relief (26)

Gsq: hand, like, help, good, please, safe, thank, great (0-7), 19
(48), free (8), co (751), support (9), thanks (10), well (11),
corona (752), best (12), store (33), grocery (42), positive (13)

Table 3: Top terms of the corona dataset under Gpr and Gsq.
Each term is attached the position by the other function.

Dataset Addition Drop (%)

toy-spam - I was a bit (disappointed / unsatis-
fied) with this game’s performance.

32/2

toy-spam - It is just a (small / usual) item. 60/8

toy-spam + This store contained (classic /
board) games.

52/0

toy-spam + That game’s theme is (love / ani-
mals).

44/6

corona + I bought (hand / -) sanitizers. 44/2

corona + People should (support / back) oth-
ers more.

62/1

corona - People shouldn’t fret over this
(crisis / situation).

62/2

corona (-) The pandemic affected (crude / -)
oil prices.

57/7

Table 4: Sentences with top-10 anchors by Gpr (in bold). Each
sentence is appended to all documents with the opposite label.
The average accuracy is shown before and after the change.

Counterfactual examples. In Table 4, we ran the follow-
ing experiment, inspired by the work of Wallace et al. (2019)
on the impact of concatenated text on the model’s perfor-
mance. For various tasks and classes, we manually generated
short sentences with their top-10 terms of Gpr (Optimized).
Each sentence is appended to all documents with an opposite
label. We then measured the drop in the overall accuracy of
the classifier due to the change; that is, we compared the
accuracy before to after the change. We then repeated the
measurement when replacing the term with another word of a
similar nature. Importantly, the word replacement is such that
the meaning of the sentence should barely impact that clas-
sification, so one could expect similar drops. Nevertheless,
we can see that applying this change reduces the accuracy
by a considerable amount (∼ 50%). This suggests that our
method indeed finds significant terms for the model.

6 Conclusions
We studied the problem of identifying the top-k terms un-
der an aggregation of their identification as anchors or non-
anchors in the dataset. We proposed the probabilistic aggre-
gation Gpr as a way of accounting for both the frequency of
words and their treatment likelihood of being anchors. Global
aggregation over the Anchor explanations incurs a prohibitive
computational cost. We proposed techniques for considerably
accelerating the identification of the top-k terms and showed
experimentally that we obtain an anytime solution that is
much more useful for online analysis, reducing the time from
hours to minutes and seconds. We focused on single-word
terms, and it is left for future work to study the case of multi-
ple words, where the challenge is bigger due to the number
of candidates for the top-k terms. Finally, while the runtime
optimizations were applied to Anchor, the general framework
can be adapted to any method of local attribution scores, and
such adaptations are also left for future work.
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