What do Neural Machine Translation Models Learn About Morphology
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(ii) Feature extraction from trained model
(i) NMT model training v
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e Effect of encoder depth
ronoun o Representations from lower layers
T are better for POS/morphology.
o But deeper networks improve BLEU.

e Effect of target language
o Translating to morphologically-poorer
languages leads to better representations.
o BLEU scores do not always entail better
morphological representations.

Table 3: POS tagging accuracy using word-based
and char-based encoder/decoder representations.
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= We investigate what neural machine

el s translation models learn about morphology.
De We evaluate NMT representation quality on
En POS and morphological tagging.

Our insights can guide further development
of NMT systems, for example by guiding joint
learning of translation and morphology.
Future work can extend the analysis to other
representations, deeper networks, and
semantic tasks.
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e 3 step procedure to extrinsically evaluate
morphology learned in different parts of the
network.

e Quality of trained classifier reflects quality of
extracted representations.

® Extrinsic Tasks:

o Part-of-speech (POS) tagging. el
o Full morphological tagging.
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