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Abstract 
Deep-learning models are transforming biological research, including many bioinformatics and 

comparative genomics algorithms, such as sequence alignments, phylogenetic tree inference, and automatic 

classification of protein functions. Among these deep-learning algorithms, models for processing natural 

languages, developed in the natural language processing (NLP) community, were recently applied to 

biological sequences.  However, biological sequences are different from natural languages, such as English, 

and French, in which segmentation of the text to separate words is relatively straightforward. Moreover, 

biological sequences are characterized by extremely long sentences, which hamper their processing by 

current machine-learning models, notably the transformer architecture. In NLP, one of the first processing 

steps is to transform the raw text to a list of tokens. Deep-learning applications to biological sequence data 

mostly segment proteins and DNA to single characters. In this work, we study the effect of alternative 

tokenization algorithms on eight different tasks in biology, from predicting the function of proteins and 

their stability, through nucleotide sequence alignment, to classifying proteins to specific families. We 

demonstrate that applying alternative tokenization algorithms can increase accuracy and at the same time, 

substantially reduce the input length compared to the trivial tokenizer in which each character is a token. 

Furthermore, applying these tokenization algorithms allows interpreting trained models, taking into account 

dependencies among positions. Finally, we trained these tokenizers on a large dataset of protein sequences 

containing more than 400 billion amino acids, which resulted in over a three-fold decrease in the number 

of tokens. We then tested these tokenizers trained on large-scale data on the above specific tasks and showed 

that for some tasks it is highly beneficial to train database-specific tokenizers. Our study suggests that 

tokenizers are likely to be a critical component in future deep-network analysis of biological sequence data.  
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Introduction  
Since the development of modern DNA sequencing technologies, there has been a rapid growth of available 

genomic data. While a relatively small bacterial genome such as Escherichia coli is roughly five million 

bases (Markowitz et al. 2012), the complete sequence of a human genome is more than three billion bases 

long (Nurk et al. 2022). Current large-scale protein datasets are growing at an exponential rate and already 

encompass hundreds of billions of amino acids (Steinegger and Söding 2018). In light of the increasing size 

and length of biological sequence datasets, new processing methods are needed. 

Deep-learning algorithms transformed many fields (LeCun, Bengio, and Hinton 2015), including computer 

vision (Voulodimos et al. 2018) and biomedical research (Rudas et al. 2023). They were recently introduced 

to comparative genomics (Miller, Stern, and Burstein 2022; Eraslan et al. 2019; Koumakis 2020; Talukder 

et al. 2021; Alharbi and Rashid 2022). The use of deep learning for genomic analysis is a game-changer 

and gains momentum as neural network solutions usually outperform traditional algorithms (Jumper et al. 

2021; Kulmanov, Khan, and Hoehndorf 2018). Both natural human languages and biological sequences are 

composed of discrete characters (letters and nucleotides, respectively). These characters are the building 

blocks of sophisticated structures, i.e., text and genomes, which include elements such as sentences and 

genes, respectively. Although NLP architectures can be adapted to biological problems, considerable 

differences remain between human language and genomic data (Yu et al. 2019; List et al. 2016; Dotan et 

al. 2023). One major difference is that natural languages are typically composed of many different words, 

each composed of characters from a given alphabet, while DNA biological sequences are composed of long 

stretches of nucleotide characters and the definition of a word is not intuitive.  

When analyzed using deep neural networks, long sequences raise memory consumption and run-time 

challenges. These challenges are held both when analyzing natural languages and biological sequence data.  

Different approaches to tackle these issues have emerged, including: (1) Developing specific architectures 

for long sequences (Lin et al. 2021; Rao et al. 2021); (2) Splitting the data into smaller segments (Dotan et 

al. 2023); (3) K-mer representation of all possible nucleotides (Ji et al. 2021). 

In NLP, tokenization is the process of segmenting a running text into words or subword units (for example, 

splitting “He’s walking” into [He, ‘s, walk, ing]). Tokenization reduces the size of the vocabulary, which 

consists of a fixed set of items serving as atomic units. Tokenization may also help handling unknown 

words – for example, if the word “walked” is unknown, splitting it to [walk, ed] may help associating it 

with the known unit “walk”. Modern tokenization algorithms are data-driven and do not necessarily 

correspond to linguistically meaningful units. For example, the word ‘Bioinformatics’, might be split into 

three subwords, “Bioin”, “form”, and “atics”. Tokenization algorithms split such words into common 

subwords and thus enable NLP-based methods to put these tokens in context. This may result in increased 
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ability to infer meanings. Subwords tokenizers include “Byte-Pair Encoding” (BPE), “WordPiece” and 

“Unigram” (Sennrich, Haddow, and Birch 2016; Schuster and Nakajima 2012; Kudo 2018). The BPE and 

WordPiece tokenizers initialize a dictionary consisting of all the characters in the raw text, and 

progressively select pairs of tokens to merge and add them as a new token to the dictionary. BPE and 

WordPiece differ in how pairs are selected: while BPE adds the most frequent pair, WordPiece adds the 

pair that maximizes the frequency of the pair divided by the product of the frequencies of the two tokens 

(see Methods). The Unigram methodology is different. It initializes a dictionary consisting of a very large 

number of relevant tokens. The dictionary is next trimmed by removing non-contributing tokens, which are 

inferred by applying a specific loss function (see Methods).  

While text tokenization of human languages such as English is a standard NLP methodology, when DNA 

sequences are analyzed, each nucleotide is typically considered a token. Thus, while human languages such 

as English contain very large dictionaries of thousands of tokens, genomic data contain considerably smaller 

dictionaries (four items). The number of tokens being processed is also different. Typical text in English 

can range from a few dozens to a few million tokens. This is in contrast to genomic data in which, using 

the dictionary of the four nucleotides, “A”, “C”, “G”, and “T”, the number of tokens representing the entire 

genome will be the number of nucleotides (Figure 1a). One can think of different dictionaries, based on K-

mers (Ji et al. 2021). For example, one that contains all the possible pairs: “AA”, “AC”, “AG”, “AT”, “CA” 

… “TT”. This raises the size of the dictionary by a power of two (i.e., 16) and reduces the length of the 

sequences by approximately two folds (Figure 1b). Of note, the conversion of nucleotides to codons has a 

similar impact as the dictionary size is 64 (61 sense codons and three stop codons) and the sequence length 

is reduced by a factor of three. 

 

Figure 1: Different tokenization algorithms can be applied to biological sequences, as exemplified for the sequence 
“AAGTCAAGGATC”. (a) The baseline “words” tokenizer assumes a dictionary consisting of the nucleotides: “A”, “C”, “G” and “T”. 
The length of the encoded sequence is 12, i.e., the number of nucleotides; (b) The “pairs” tokenizer assumes a dictionary consisting 
of all possible nucleotide pairs. The length of the encoded sequences is typically halved; (c) A sophisticated dictionary consisting 
of only three tokens: “AAG”, “TC” and “GA”. Using this dictionary, the encoded sequence contains only five tokens. 
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The genome of each species contains various repetitive elements, which vary in type and length. We expect 

data-driven biological tokenizers to assign a token for such repetitive elements. Notably, repetitive elements 

comprise more than half of the human genome (Richard, Kerrest, and Dujon 2008). The existence of such 

repetitive elements motivates the employment of data-driven tokenizers, which can substantially reduce the 

number of tokens to process without a substantial increase in the size of the dictionary. Of note, reducing 

the number of tokens partially alleviates the problems encountered with long sequences. However, too large 

dictionaries forbid capturing shared elements among sequences. Which tokenizer best balances between 

these two constraints is an open question. In this study, we focus on comparing transformers trained on data 

processed by different tokenizers, in terms of performance and input length.  

 

Methods 

Outline 
We aim to train and evaluate alternative tokenizers. The input is a set of biological sequences. Different 

biological tasks are considered, e.g., classifying the sequence into several categories. The tokenizers are 

applied to the input sequences creating a list of integers, which represent the different tokens. Such lists are 

used to train a deep-learning network model (in our case, a transformer). A single transformer (Vaswani et 

al. 2017) is trained for each biological task and each tokenizer. The performance is measured on transformer 

processing test data (which were processed with the same tokenizer as the training data). In addition, we 

report the effect on the number of input tokens, which is a proxy for memory and runtime consumption. 

Tokenizers  
We evaluated five different tokenizers on biological sequences: BPE, Unigram, WordPiece, “words”, and 

“pairs”. “Words” is a trivial tokenizer, in which the dictionary contains all possible amino-acids or 

nucleotides. In the “pairs” tokenizer, the dictionary contains all possible pairs of characters (amino-acids 

or nucleotides). Of note, while in “words” and “pairs” the dictionary size is fixed, it is a tunable parameter 

in the other three tokenizers. Thus, we tested various values for the dictionary size. For each computational 

task and for each combination of tokenizer and dictionary size, a different transformer was trained, and its 

performance evaluated (as described below). We would like to emphasize the differences in applying 

tokenizers to natural languages versus biological sequences. In most natural languages, there are three levels 

of text representation: characters, words, and sentences. In contrast, biological sequences have only two 

levels, as they lack the space character that separates words in natural languages. 
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BPE (Byte-Pair Encoding) 

Initially, BPE was a general-purpose compression algorithm (Gage, 1994), but it has since been adopted 

for tokenizing textual data. It was first utilized for machine translation with recurrent neural networks 

(Sennrich, Haddow, and Birch 2016) and later for transformers (Vaswani et al. 2017). The tokenizer creates 

a base vocabulary from unique characters in the pre-tokenized data and then gradually merges the most 

frequent pair, adding each new one to the vocabulary. This process stops when the vocabulary size reaches 

a hyperparameter that must be determined before training the tokenizer.  

WordPiece 

This tokenizer is similar to BPE (Schuster and Nakajima 2012). Like BPE, it uses the entire set of characters 

in pre-tokenized data to create a base vocabulary and progressively adds new tokens to it. Unlike BPE, 

which adds the most frequent pair, WordPiece selects the pair that maximizes a certain score calculated as: 

𝑠𝑐𝑜𝑟𝑒 =  
𝑓1,2

𝑓1 × 𝑓2 
 

Here, 𝑓1,2 is the frequency of the pair of elements, while 𝑓1 and 𝑓2 are the frequencies of the two separate 

elements. 

Unigram 

Unigram (Kudo 2018) takes a different approach than BPE and WordPiece. It begins with a heuristic 

identification of an initialized vocabulary, which is later trimmed. There are different ways to create the 

initial vocabulary, e.g., selecting the most frequent sub-strings in the corpus or using a different tokenizer 

such as BPE with specific hyperparameters that yield a large vocabulary. Next, the Unigram tokenizer 

progressively removes tokens from the vocabulary by searching for tokens whose removal improves the 

model fit, as quantified using a loss function (detailed below). Usually, more than one token is removed at 

a time, since computing the loss for all tokens is a costly operation. Given a corpus of 𝑁  words, 

𝑥1, … , 𝑥𝑖, … , 𝑥𝑁, the loss is the sum of the negative log-likelihood of the score of each word, denotated by 

ℎ(𝑥𝑖) for the word 𝑖: 

𝑙𝑜𝑠𝑠 = − ∑ log(ℎ(𝑥𝑖))

𝑁

𝑖=1

 

where ℎ(𝑥𝑖) is the maximum score of dividing the word 𝑥𝑖 to tokens: 
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ℎ(𝑥𝑖) = max
𝑧∈𝑆(𝑥𝑖)

(𝑔(𝑧)) 

𝑆(𝑥𝑖) are all the possible options to split 𝑥𝑖 to tokens, and 𝑔 maps a specific set of tokens, i.e., option, 

𝑡1, … , 𝑡𝑗 … , 𝑡𝑀 = 𝑧 to a score.  

𝑔(𝑧) = ∏ 𝑝(𝑡𝑗)

𝑀

𝑗=1

 

𝑝(𝑡𝑗) is the unigram probability of token 𝑗, i.e., the number of occurrences of token 𝑗 divided by the total 

number of tokens in the corpus. 

Biological Datasets 
We compared the performance of the above tokenizers on eight datasets, described below, which vary in 

terms of their size, the learning task required (five classifications, two regressions, and one sequence 

alignment), and the type of sequence data (one dataset contains DNA sequences, while the others contain 

protein sequences).  

Dataset1. Type III effectors (we will use the term effectors below) are proteins that are secreted by 

pathogenic bacteria from the bacterial cytoplasm into the host cell. In the host cell, they manipulate cellular 

processes to the benefit of the bacteria. The computational challenge is to classify bacterial proteins to those 

that are effectors and those that are not. The secretion signal that determines whether a protein is an effector 

or not was shown to reside in the 100 amino acids of the N-terminus of a protein (Notti and Stebbins 2016). 

We obtained a dataset of 641 effectors and 4,544 non-effector proteins (Wagner et al. 2022). From each 

protein, we only considered the 100 N-terminal amino acids. The true label (whether or not the protein is 

an effector) is known from experimental work. The computational task is to correctly classify each protein 

into its category. These data were divided into training, validation and test, each containing 497, 60 and 

84 effectors and 2,034, 219 and 2,291 non-effectors, respectively. 

Dataset2. A superfamily is a group of proteins that share similar properties and functions. The second task 

is to classify proteins to superfamilies based on their amino-acid sequences. To this end, we downloaded 

sequences from the Pfam database (Mistry et al. 2021). We randomly picked nine different superfamilies 

containing over 2,000 protein sequences: (1) SSF100895 Kazal-type serine protease inhibitors; (2) 

SSF110035 GDNF receptor-like; (3) SSF109993 VPS9 domain; (4) SSF101152 Mob1/ phocein; (5) 

SSF110019 ERO1-like; (6) SSF102546 RbsD-like; (7) SSF101912 Sema domain; (8) SSF100939 SPOC 

domain-like; (9) SSF100879 Lesion bypass DNA polymerase (Y-family), little finger domain. For each 

superfamily we downloaded the first 2,000 protein sequences, which we split into training, validation and 
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test data, containing 1,800, 100, and 100 sequences, respectively. The Pfam database includes information 

regarding the specific fragments issued with the superfamily. For each of the sequences, we extracted these 

fragments and concatenated them. The task is predicting the superfamily given the fragments. 

Dataset3. Sequence alignment is one of the common tasks in bioinformatics (Van Noorden, Maher, and 

Nuzzo 2014) as it provides a record of similarity between homologous sequences. One has to account for 

different evolutionary events such as insertions, deletions and substitutions to correctly infer the alignment. 

The third dataset contains pairwise homologous nucleotide sequences, and the task is to correctly align 

them. We have previously developed a deep-learning-based algorithm for such an alignment task, in which 

we train transformers to map pairs of unaligned sequences, i.e., source sentences, into a valid alignment, 

i.e., target sentences (Dotan et al. 2023). The average number of nucleotides is 429 and 434 for the source 

and target sentences, respectively. This dataset was simulated by SpartaABC (Loewenthal et al. 2021), and 

hence the correct alignment is known. The data include 395,000, 2,000 and 3,000 training, validation and 

test alignments, respectively. To simulate those sequences, we have used the following parameters: (1) Root 

length between 150  to 300  nucleotides; (2) Pairwise evolutionary distance between 0.05  to 0.15 

substitutions per site; (3) An insertion rate between 0.0 to 0.05 events per substitution and similarly for 

deletions; (4) The “A parameter” dictates the length distribution of insertion and deletion events. The A 

parameter for insertions ranged between 1.01 and 2.0, and similarly for deletions. For each simulation of a 

pair of sequences, SpartaABC samples uniformly from those ranges and generates the alignment based on 

the sampled parameters. 

Dataset4. Protein folds are characteristics of the protein three-dimensional structure. Often, proteins evolve 

so that their sequence similarity becomes low, yet, they still share substantial structural similarity. 

Nevertheless, the folding information is encoded within the protein sequence. Here we analyzed 13,766 

protein sequences, each of which is labeled by a specific fold (Hou, Adhikari, and Cheng 2018). There is a 

total of 1,195 protein folds, and the computational task it to classify each protein to its correct fold based 

on its amino-acid sequence. These data were partitioned to 12,312, 736, 718 training, validation, and test 

pairs of sequence-fold.  

Dataset5. The fluorescence intensity of a protein is determined by its sequence and structure. The general 

mapping form sequence space to fluorescence intensity is unknown in general. Here we rely on previously 

established data (Sarkisyan et al. 2016), which were partitioned to 21,446, 5,363, and 27,217 training, 

validation, and test pairs of sequence-log-intensity values, respectively. Of note, unlike the previous tasks, 

here a regression model is needed from the sequence space to fluorescence intensities. 
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Dataset6. In stability landscape prediction, the challenge is to predict the concentration threshold from 

which the protein unfolds, given the sequence of amino-acids (Rocklin et al. 2017). For this regression task, 

the data included 53,614, 2,512, 12,851 training, validation, and test pairs of sequence-concentration, 

respectively. 

Dataset7. This is a dataset for a fold prediction task, similar to dataset 4. However, here the classification 

is only to seven possible folds. These data were previously assembled (Andreeva et al. 2020) and include 

14,112, 1,568, and 3,921 training, validation, and test pairs, in which each pair includes a sequence and 

its associated fold. These data were taken from ProteinBERT (Brandes et al. 2022). As these data did not 

contain a validation set, we randomly sampled 10% of the training data to serve as a validation data. 

Dataset8. Neuropeptides are peptides that are used for communication between neural cells and their 

peripheral cells (Burbach 2010). The vast majority of neuropeptides are translated as precursor 

neuropeptides and undergo cleavage and maturation events. Ofer and Linial (2014) have previously 

assembled a database of precursor neuropeptides and non-precursor neuropeptides from various animal 

species and developed a binary classification algorithm for predicting precursor neuropeptides given a set 

of protein sequences. We reanalyzed their data, which included 2,727, 303, and 337 training, validation, 

and test pairs, in which each pair includes a sequence and whether or not it is a neuropeptide. 

Of note, datasets 4, 5, and 6 were previously analyzed by Rao et al. (2019) and Brandes et al. (2022) and 

datasets 7 and 8 were previously analyzed by Brandes et al. (2022). 

Tokenizer Implementation 
We compared five different tokenizers: BPE, WordPiece and Unigram (Sennrich, Haddow, and Birch 2016; 

Schuster and Nakajima 2012; Kudo 2018) as well as the “words” and “pairs”. The three first tokenizers can 

be trained for specific data, i.e., they are data-driven. These were trained (on the training data) with default 

parameters (e.g., parameters that control the trimming of the Unigram program). The output of this stage is 

a dictionary for each transformer and dataset. All datasets were next encoded using the obtained 

dictionaries. This step was achieved using the HuggingFace library (Wolf et al. 2020). For each tokenizer, 

we evaluate the following dictionary sizes: 100, 200, 400, 800, 1,600 and 3,200. The output of each 

tokenizer and sequence is a vector of tokens (represented as integer numbers). Different sequences are 

represented by a different number of tokens. In order for all vectors to be of the same length a maximum 

size was set. A fixed size is needed for applying positional embeddings (a modification step to the 

embedding matrix used to provide information regarding the ordering of the tokens) and for batching. 

Specifically, for dataset 1 the maximum size was set to 100 tokens. Similarly, for dataset 2, the maximum 

size was set to 512 tokens, for dataset 3 to 1,024 tokens and for datasets 4-8, to 512 tokens. For all 
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classification and regression tasks, proteins longer than this size were trimmed and proteins shorter than 

this size were padded with a special token. These encoded data were next used to train transformers (on the 

training data) for the specific computational task associated with each dataset. 

Training the Transformers 
Two different transformer architectures were considered for all classification and regression tasks: BERT 

(Devlin et al. 2019) and GPT (Radford et al., 2018). As the former resulted in higher performance on the 

validation data, we only present results obtained with BERT. In each case, the models were randomly 

initialized and trained on the tokenized training data of each dataset. Using the validation data, we optimized 

several hyperparameters for each computational task: the number of layers, the number of attention heads, 

and the size of the hidden vector. The best performing configuration was with two hidden layers and two 

attention heads for all datasets. The size of the hidden vector was 128 for all datasets, except dataset 1, for 

which the optimal performance was with a vector of size 64 . For each, dataset, tokenizer type, and 

dictionary size, we trained three transformers with different learning rates: 0.001, 0.0001 and 0.00001 and 

returned the one with the best performance. We used a constant scheduler in all analyses, i.e., the learning 

rate was fixed during the entire learning process. Transformer training and testing were implemented using 

the HuggingFace library (Wolf et al. 2020).  

For dataset 3, which is associated with a sequence-to-sequence task, following Dotan et al. (2023), we relied 

on the “vaswani_wmt_en_de_big” architecture, with 6 hidden layers, 16 attention heads, and a hidden 

vector size of 1,024. The training was conducted with the Fairseq library (Ott et al. 2019). The learning 

rate, warmup values, and max tokens were set to: 5 × 10−5, 3,000, and 4,096, respectively.  

Comparison with Previous Models 
We compared the performance of the different trained models with those obtained in previous studies. 

Specifically, datasets 4, 5, and 6 were each previously analyzed by applying three different models: 

ProteinBERT (Brandes et al. 2022), the Tasks Assessing Protein Embeddings (TAPE) transformer (Rao et 

al. 2019), and a biological model that relied on the LSTM architecture (Rao et al. 2019). Datasets 7 and 8 

were previously analyzed using ProteinBERT. These previous works all used the “words” tokenizer. As we 

did not pre-train our models, for a fair comparison, the performance of these previous models was evaluated 

without pre-training. 

Evaluating the Performance on the Different Tasks 
For classification tasks, we report Accuracy (ACC), Area Under the Curve (AUC), and Matthew’s 

Correlation Coefficient (MCC) (Matthews 1975). The latter is more suitable for unbalanced datasets as it 

considers the number of samples from each class: 
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𝑀𝐶𝐶 =
𝑇𝑁 × 𝑇𝑃 − 𝐹𝑁 × 𝐹𝑃

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

TN is the number of true negatives, TP true positives, FN false negatives, and FP false positives. We note 

that the range of MCC is from -1 to 1 while ACC and AUC range between 0 and 1. 

For regressions tasks, we report the Spearman rank correlation, ranging from -1 to 1, where 1 reflects a 

perfect score.  

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝑐𝑜𝑣(𝑅(𝑋), 𝑅(𝑌))

𝜎𝑅(𝑥)𝜎𝑅(𝑌)
 

𝑋  and 𝑌  are the predictions and the labels, respectively. 𝑅(𝑍) is the ranking of 𝑍 , 𝜎𝑍  is the standard 

deviation of 𝑍, and 𝑐𝑜𝑣(𝑍, 𝑊) is the covariance of 𝑍 and 𝑊. 

For the alignment task, we report the performance of the aligners with the Column Score (CS). The CS is 

measured by counting the number of columns in the inferred alignment that have a matching column in the 

true alignment, out of the total number of columns in the true alignment (Penn et al. 2010). The range of 

the CS is between zero and one. We also report the coverage score:  

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑉𝐴

𝑇𝐴
 

where VA is the number of valid alignments and TA is the total number of alignments tested. When using 

transformers to align biological sequences, it is possible that the transformer erroneously creates invalid 

alignments. For example, if the input sequences are “AAG” and “AAC”, the transformer may output a 

pairwise alignment in which “AA–G” is aligned to “AAC”. This is clearly an invalid alignment as the 

number of characters in all alignment rows should be identical. In addition, each alignment row should be 

identical to the original corresponding (unaligned) sequence after removing all of its gaps. In rare cases, 

this is not the case, and these alignments are also considered invalid (Dotan et al. 2023). Of note, all 

alignments in the training data are valid alignments. Thus, higher coverage suggests better learning from 

the training data.  

Hyperparameter Optimization Implementation 
We conducted an analysis by evaluating each tokenizer across a grid of hyperparameter combinations. We 

focused on four key hyperparameters: layers (1, 2, or 4), attention heads (1, 2, or 4), hidden sizes (32, 64, 

or 128) and learning rate (0.00001, 0.0001, or 0.001). For every possible set of hyperparameters, we trained 

a transformer model, varying the tokenizer employed. Each model was trained for ten epochs. We evaluated 

the results on the superfamily classification task (dataset 2). Subsequently, we assessed the degree to which 
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the selected hyperparameters influenced performance and investigated the broader implications of 

hyperparameter optimization on the comparative ranking of diverse tokenization methods. We compared 

the performance of a model in which one hyperparameter is fixed to an arbitrary value while the other 

hyperparameters are optimized to a model in which all four parameters are optimized. A few alternatives 

of this fixed value were evaluated. 

Visualizing the Signals Within Protein Superfamilies 
For the task of classifying sequences to superfamilies, the trained transformer allows highlighting the 

positions and signatures (tokens) that contribute most for distinguishing one superfamily from the others. 

We used the Captum library (Kokhlikyan et al. 2020), which allows interpreting trained transformers 

regarding their decision making. To this end, the integrated gradients method (Sundararajan, Taly, and Yan 

2017) was used to calculate the importance of each of the input tokens (we used the default number of steps 

which is 50). For example, in the context of superfamily classification, how important each token is for the 

correct identification of a specific superfamily. Unlike standard motifs used in computational biology, here 

the algorithm can highlight both tokens whose inclusion in the protein sequence supports a classification to 

a specific superfamily and tokens whose exclusion supports the classification. To do this, we first identified 

the positions of tokens with high attribution scores in each sequence (absolute value above 0.2). Then, we 

created histograms for each family to see where these high score tokens were located. We next searched for 

specific amino-acids patterns by using a sliding-window approach. Moving along the sequences a window 

of size 15 amino acids, we searched for the presence of a specific token in at least eight out of 100 sequences 

within each superfamily. If so, we added a label for the token at that location. This information can be used 

to identify the locations of signals on protein sequences. The transformer used was the best performing one, 

trained on the BPE-tokenized data with 1,600 vocabulary items. 

Training on the BFD Dataset 
The BFD dataset is currently the largest public dataset of protein sequences, comprising over 2.2 billion 

sequences and 400 billion amino acids (Steinegger and Söding 2018). This dataset includes multiple 

sources of sequences that were aligned to longer sequences using MMseqs2 (Steinegger and Söding 2017) 

and filtered based on sequence identity and number of sequences per cluster. After obtaining this dataset, 

we preprocessed the sequences by removing gap characters (“–”). This preprocessing phase resulted in a 

file of approximately 400 GB, containing pure proteins. We trained the BPE, WordPiece, and Unigram 

tokenizers on this dataset. Due to the large memory required for this task, we utilized the AMD EPYC 7H12 

machines, with 256 cores and approximately 1 Tb RAM. Due to memory and run time limitation, we 

trained the different tokenizers on subsamples with increasing sizes, ranging from 1,000 to 10,000,000 

sequences.  
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Results 

Effectors and Superfamilies Classifications 
We first evaluated the performance of the various tokenization algorithms for the task of classifying proteins 

to those that are effectors and those that are not (dataset 1). Figure 2a shows the performance, as measured 

by the MCC score, for the various tokenizers. It also shows the reduction in the length of the encoded 

proteins. The optimal performance, with an MCC score of 0.507, was obtained using the Unigram tokenizer 

with a dictionary size of 100 tokens. Compared with the default “words” tokenizer, it is both more accurate 

(the MCC of the “words” tokenizer was only 0.43), and it led to a 1.3-fold reduction in sequence length 

(i.e., the number of tokens). The highest fold reduction of 2.4 in length was obtained with the WordPiece 

tokenizer when using 3,200 tokens, albeit with a reduction of 0.14 in the MCC score compared to the best 

tokenizer.  

Figure 2b demonstrates the performance of applying the different tokenizers on the multiclass classification 

(dataset 2). The BPE tokenizer resulted in lower sequence length compared to Unigram. While the 3,200 

tokens Unigram dictionary led to only a 1.79-fold reduction in sequence length, BPE that has the same 

dictionary size, led to over 2.5 folds reduction in sequence length. The best performing transformer used 

the BPE tokenizer. It was trained on a dictionary containing 1,600 tokens and had a very high performance, 

with an MCC score of 0.995. It led to a 2.2-fold reduction in the number tokens. Of note, the transformer 

trained with the “words” tokenizer had lower performance compared to transformers trained with 

alternative tokenizers. Similarly, most transformers using data-driven tokenizers outperformed the “pairs”-

based dictionary. Interestingly, BPE with dictionaries of 100 and 200 tokens resulted in a higher length-

reduction compared to WordPiece with the same dictionary sizes. This was reverted when comparing larger 

dictionaries with 400 or more tokens. 
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(a)        (b) 

 

Figure 2: Panels (a) and (b) show the results of the trained transformers on the effector and superfamilies (SSF) classification tasks, 
respectively. A different color is assigned for each different tokenizer: BPE, WordPiece (WPC), Unigram (UNI) and the baseline 
tokenizers: “words” and “pairs”. The dictionary size (Dict size) is demonstrated by the size of the circle. The x-axis indicates the 
fold-reduction in number of tokens used (i.e., the “length”) relative to the “words” tokenizer. The y axis indicates the improvement 
in MCC score relative to the “words” tokenizer. The “word” tokenizer had MCC scores of 0.43 and 0.942 for the effector and SSF 
tasks, respectively.  The closer the dictionary is to the right upper corner, the better it is, as it has higher length reduction and 
higher performance. 

Alignment 
Next, we evaluated the impact of tokenizing nucleotide sequences on alignment accuracy and coverage (see 

Methods). Figure 3a shows the performance of the transformers on the alignment dataset. The accuracy of 

all transformers (measured by the CS) was very high (above 0.98), and the differences among the different 

transformers were very small (~0.007 difference in the CS between the best and the worst transformer). 

These high scores suggest that all transformers could reliably align the analyzed sequences.  

Figure 3b shows the coverage of the transformers on the alignment dataset. The coverage is calculated as 

the number of valid alignments divided by the number of tested alignments (see Methods). Large 

differences in coverage were observed between the worst and best transformers: the transformer using the 

“words” tokenizer obtained a coverage of 0.59, while the “pairs” had the highest coverage of 0.941. The 

best performing transformer using a data-driven tokenizer was the BPE transformer with a dictionary size 

of 400, resulting in a coverage of 0.924. However, this BPE tokenizer reduced the number of tokens by 

more than fourfold, while the baseline “pairs” reduced the number of tokens by only twofold. Thus, the 

BPE with 400 tokens had only half as many tokens as the “pairs” baseline. As can be seen from the figure, 

there is a trade-off between reduction and performance. Careful examination of the BPE, WordPiece, and 

Unigram tokenizers shows that increasing the vocabulary size increases the coverage and reduction fold, 

but once the size reaches a few hundred (400, 200, 200 for BPE, WordPiece and Unigram, respectively), 
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the coverage begins to decrease. Even dictionaries of 100 or 200 tokens have large impact on the length of 

the encoded sequences, slightly more than three-fold.  

 

(a)       (b) 

  

Figure 3: Results of the transformers trained on the alignment dataset preprocessed by different tokenizers: BPE, WordPiece 
(WPC), Unigram (UNI) and the baseline approaches: “words” and “pairs”. Panels (a) and (b) report the performance as measured 
by the CS and the coverage, respectively. The “word” tokenizer had a CS of 0.99 (panel a), and a coverage of 0.59 (panel b). Of 
note, the CS is only computed on valid alignments. 

Comparison of Different Models on Additional Classification and Regression Tasks 
Figure 4a illustrates the results gained on the remote homology classification (dataset 4) (Rao et al. 2019; 

Hou, Adhikari, and Cheng 2018). The results of the regression task of predicting the log-fluorescence of 

proteins (dataset 5) are demonstrated in Figure 4b (Rao et al. 2019; Sarkisyan et al. 2016). Figure 4c shows 

the results of the proteins stability regression task (dataset 6) (Rao et al. 2019; Rocklin et al. 2017). The 

results of training the transformers on the tokenized data were compared to the previously published results 

of ProteinBERT (Brandes et al. 2022), TAPE (Rao et al. 2019), and LSTM (Rao et al. 2019) without their 

pretraining. Comparing the TAPE transformer with one of the transformer that used a data-driven tokenizer, 

specifically WordPiece with the 400 tokens, revealed that the latter was both more accurate and used less 

tokens in all three computational tasks (Figure 4). Of note, TAPE includes seven times more free parameters 

than the transformer using WordPiece. Carefully examining the performance of ProteinBERT (Brandes et 

al. 2022) reveals it has the best performance on the fluorescence (Figure 4b) and stability (Figure 4c) tasks 

and the lowest performance on the remote homology task. Of note, while the ProteinBERT, LSTM and 

TAPE have 16 million (M), 38M and 38M parameters, respectively, the remaining transformers studied 

have only 5M free parameters. One of the main advantages of using the optimized tokenizers was 
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demonstrated in the fluorescence task (Figure 4b), where using dictionaries with a small number of tokens 

(such as 3,200 for BPE and WordPiece) was able to significantly reduce the length of the input sequences 

(by up to 20 fold) compared to the trivial character-based (“words”) tokenizers used in ProteinBERT, 

LSTM, and TAPE.  

(a)       (b) 

   

(c) 

 

Figure 4: Evaluating the performance of the different tokenizers and comparing them to the previously tested models: 
ProteinBERT, LSTM and TAPE. The x-axis is the length reduction, and the y-axis is the performance of the transformer trained on 
the same dataset. Panels (a), (b), and (c) display the results of datasets 4, 5, and 6, respectively. The “words” tokenizer had an 
accuracy (ACC) score of 0.101, spearman correlation scores of 0.23 and 0.274 for the remote homology task, fluorescence task 
and the stability task, respectively.   

We compared the various tokenization techniques on two additional tasks, previously analyzed in the 

ProteinBERT study (Brandes et al. 2022): fold prediction and neuropeptide classification (Figure 5). For 

the fold prediction task (Figure 5a), we observe a trade-off between the performance and the dictionary 
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size. Of note, the transformer with the Unigram tokenizer (with 100 tokens) was both more accurate and 

used less tokens than both “words” and ProteinBERT. For the neuropeptide prediction task, the 

ProteinBERT transformer performed worse (Figure 5b) than all other transformers. A single transformer 

(the WordPiece with 3,200 tokens) had the second-best performance and the highest length reduction 

compared to all other methods.  

Our results suggest that for some datasets a tradeoff between accuracy and fold reduction exists, while for 

some tasks, using data-driven tokenizers can be beneficial in both aspects (accuracy and length reduction). 

In addition, our results suggest that the ProteinBERT architecture may be more suited for regression tasks, 

than to other tasks such as classification. 

   

 

Figure 5: We evaluated the tokenization on two datasets proposed in ProteinBERT: fold structure classification and neuropeptide 
identification. The x-axis and the y-axis refer to the length reduction and the performance, respectively. The “words” tokenizer 
had an ACC score of 0.59, and an AUC score of 0.96 for the fold task, neuropeptide task, respectively.   

Hyperparameter Optimization 
We optimized four hyperparameters: the number of layers, the number of attention heads, the hidden vector 

size, and the learning rate. The importance of each hyperparameter and its influence on performance was 

tested on the superfamily classification task (dataset 2). Our results suggest that not optimizing a 

hyperparameter only marginally affects performance and the order of performance between the various 

tokenizers (Figure 6). The “words” tokenizer consistently yielded the lowest accuracy in eleven out of 

twelve tests, and in the remaining case (Panel (a), layers = 2), it ranked second lowest. Conversely, three 

transformers consistently outperformed the others across all twelve tests. Specifically, transformers trained 

with BPE tokenizers with dictionary sizes of 1,600 and 3,200, along with the WPC tokenizer with a 

dictionary size of 3,200, consistently secured top-three positions in nine tests. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 
Figure 6: Evaluating the effect of hyperparameters optimization on the different tokenizer approaches. Panels (a), (b), (c), and (d) 
correspond to not optimizing one hyperparameter: the number of layers, the number of attention heads, the hidden vector size, 
and the learning rate, respectively. Within each panel, each subgraph depict the effects of fixing the hyperparameter to a different 
value, while optimizing the other three. The color-coded bars in the panels represent distinct tokenizer methodologies, the y-axis 
is the delta MCC from the lowest-performing transformer, which achieved a score of 0.775, and the x-axis is the dictionary size.  

Quantifying the Difference in Performance of Tokenizers Compared to the Default 
We quantified performance differences between the different tokenizers compared to the default, i.e., the 

“words” tokenizer. Consider for example the UNI tokenizer. For dataset 1, we have performance with 

different dictionary sizes. We selected the dictionary size that resulted in the best performance. We repeated 

this procedure for all other datasets. Thus, we have nine performance values for UNI (eight different 

datasets, but for dataset 3, we have two performance values, one for coverage and one for alignment 

accuracy). We next compared the 9-tuple performance vector of UNI against the 9-tuple performance vector 

of “words” using the Wilcoxon test (Wilcoxon 1945). The results suggest that UNI significantly 

outperforms “words” (p = 0.011). Similar significant results were obtained for BPE and WPC (p = 0.035, 

0.004, respectively). The “pairs” tokenizer was not significantly better than “words” (p = 0.2). These results 

highlight the benefit of using data-driven tokenizers. 
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Identification of Contributing Signals and Their Visualization 
One of the key disadvantages of using transformers is that they are highly non-linear and difficult to 

interpret. Biological sequences contain signals in specific locations that are important for determining their 

structure and function. Identifying these signals remains a challenge. Better understanding of these signals 

should result in a better mapping between a protein sequence and its structure and function, thus 

contributing to protein function prediction, classification, and design of novel proteins. By training a 

transformer to predict specific classes, we could apply interpretation tools to identify those signals. Figure 

7 displays the resulting interpretation of each superfamily, specifically enrichment and depletion of specific 

tokens as a function of the protein length. For example, a “PKK” at the N terminus of a protein suggests it 

belongs to the superfamily SSF101152. One of the key differences from the signatures that appear in Pfam 

(Mistry et al. 2021) is that here we do not rely on a multiple sequence alignment, thus accounting for 

variability in the position of specific tokens along the length of the protein. In addition, dependencies among 

tokens are accounted for. Finally, depleted tokens can be identified, e.g., the presence of the token “ER” at 

the N terminus of proteins suggests it is not SSF100879.  
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Figure 7: Visualizing the important features of each of the superfamilies. Each of the nine graphs correspond to a different family. 
In each graph, the x-axis is the amino-acid position, and the y-axis the number of sequences that had an important feature in this 
position. Additionally, we applied distinct colors to the x-axis corresponding to the ascending values.  We added labels with specific 
tokens if they are repeated in several different sequences. The graphs were created by 100 test protein sequences for each 
superfamily. 

Tokenizing the BFD Dataset 
In our previous experiments, we showed the effect of tokenizing the input on specific tasks, i.e., for each 

task we trained data-specific tokenizers. Here, we aimed to train tokenizers on a very large dataset, which 

may be important in cases where there are not enough sequences for a specific task, or as input for the next 
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generation of biological pre-trained models. To this end, we trained BPE, WordPiece and Unigram 

tokenizers on samples of proteins from the 2.2 billion protein sequences of the BFD dataset (Steinegger 

and Söding 2018). We evaluate the average sequences length as a function of the vocabulary size and 

number of sequences in the training data (Figure 8). Increasing the size of the vocabulary resulted in a sharp 

decrease in the average numbers of tokens per protein, thus enabling processing longer biological sequences 

with the similar memory requirement. In addition, the increase of the training data resulted in smaller values 

of tokens per protein. The average number of tokens per protein converged after training on 1,000,000 

samples. When using the largest dictionaries (51,200 tokens), the BPE, WordPiece and Unigram reduced 

the average length by 15.6%, 16.8% and 14.9%, respectively. Among all tokenizers, Unigram was most 

influenced by the training and vocabulary sizes: it has the highest number of tokens per proteins (182.4) 

when using small training size (1,000 sequences) and 100 tokens in the vocabulary. Yet, when the training 

data was 107 sequences and the dictionary size higher than 50,000 tokens, it obtained the best average 

length (53.1 tokens for protein).  
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Figure 8: Effect of vocabulary size and number of training samples on the three tokenizers: BPE, WordPiece and Unigram. The 
darker the color the higher the average number of tokens per protein. Increasing the vocabulary and the training size reduces the 
number of tokens per protein for all of the tested tokenizers.  

Comparing Specific versus General Data-Driven Tokenizers 
Above we trained two types of data-driven tokenizers. The first type, which we term “specific”, was trained 

on small datasets (e.g., effectors), while the second type, which we term “general” was trained on very large 

number of protein sequences, not related to a specific computational task. We next aimed to determine 

whether it is beneficial, for specific tasks, to use general versus specific data-driven tokenizers. To this end, 

we compared the performance between the specific and the general versions of the trained transformers 
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BPE, Unigram, and WordPiece on seven computational tasks (the alignment task is based on nucleotide 

rather than protein sequences and was hence not included here). For all tasks, the specific type outperformed 

the general type, and the results were statistically significant for six out of the seven tasks (Figure 9). For 

some tasks such as the remote homology task, using the general tokenizers resulted in very poor 

performance compared to the specific tokenizers. We hypothesize that tasks involving proteins with similar 

domains would be more affected by using task-specific tokenizers, while tasks encompassing proteins 

across the tree of life would likely show similar results to those using the BFD-trained tokenizers. 

 

Figure 9: Comparing the performance of transformer trained on data encoded by specific trained tokenizers (“Specific”) and 

tokenizers trained on the BFD dataset (“General”). The evaluation was conducted on seven datasets, utilizing three tokenizer 

types: BPE, Unigram, and WordPiece. For each tokenizer, multiple vocabulary sizes were tested: 100, 200, 400, 800, 1,600, and 

3,200. The performance is represented by the green and red colors, where a higher intensity of green indicates better performance. 

Task Vocabulary Size Specific General Specific General Specific General

100 0.655 0.317 0.764 0.302 0.673 0.406

200 0.655 0.355 0.698 0.312 0.662 0.273

400 0.540 0.252 0.493 0.385 0.625 0.265

800 0.625 0.262 0.620 0.298 0.533 0.290

1600 0.643 0.279 0.534 0.267 0.643 0.273

3200 0.673 0.167 0.491 0.297 0.521 0.306

100 0.973 0.961 0.965 0.959 0.950 0.950

200 0.983 0.971 0.978 0.960 0.983 0.968

400 0.977 0.973 0.975 0.971 0.980 0.958

800 0.980 0.964 0.975 0.968 0.970 0.979

1600 0.995 0.974 0.980 0.980 0.987 0.974

3200 0.978 0.975 0.972 0.981 0.985 0.969

100 0.091 0.004 0.091 0.001 0.095 0.001

200 0.082 0.004 0.089 0.003 0.102 0.003

400 0.088 0.001 0.092 0.006 0.103 0.000

800 0.089 0.001 0.093 0.000 0.081 0.004

1600 0.088 0.001 0.089 0.001 0.079 0.000

3200 0.077 0.000 0.064 0.003 0.093 0.001

100 0.337 0.242 0.340 0.215 0.309 0.199

200 0.387 0.436 0.372 0.247 0.497 0.270

400 0.398 0.407 0.385 0.521 0.428 0.282

800 0.528 0.244 0.329 0.270 0.521 0.293

1600 0.524 0.279 0.368 0.471 0.515 0.313

3200 0.477 0.345 0.404 0.364 0.508 0.313

100 0.154 0.275 0.119 0.323 -0.170 0.221

200 0.413 0.079 0.318 0.126 0.072 0.325

400 0.264 0.208 0.373 0.284 -0.031 0.249

800 0.349 0.317 0.132 0.021 0.146 0.306

1600 0.157 0.165 0.217 0.213 0.206 0.272

3200 0.457 0.336 -0.061 -0.022 0.359 0.509

100 0.604 0.604 0.608 0.599 0.597 0.605

200 0.596 0.602 0.594 0.594 0.597 0.608

400 0.598 0.603 0.586 0.590 0.593 0.599

800 0.590 0.601 0.588 0.592 0.579 0.592

1600 0.571 0.561 0.564 0.578 0.573 0.581

3200 0.558 0.561 0.549 0.554 0.553 0.571

100 0.783 0.751 0.782 0.755 0.742 0.728

200 0.811 0.774 0.768 0.723 0.778 0.792

400 0.817 0.785 0.833 0.805 0.755 0.798

800 0.732 0.786 0.803 0.767 0.842 0.760

1600 0.807 0.747 0.781 0.751 0.727 0.767

3200 0.804 0.721 0.777 0.760 0.833 0.805
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Each task is individually colored to facilitate comparison. To quantify the differences between the general and specific tokenizers, 

we performed paired t-tests and obtained the following p-values: 8.23−11, 0.001, 5.07−18, 0.0016, 0.356, 0.0004, 0.025, for 

datasets 1, 2, 4, 5, 6, 7, and 8, respectively. Of note, in this comparison, we only tested a single configuration of learning rate, with 

a value of 0.0001. 

 

Discussion  
Our results clearly indicate that data-driven tokenization of biological datasets can improve performance. 

This was demonstrated for all tested datasets and for all types of analyses (classification, regression, and 

sequence-to-sequence). However, no single tokenization method was optimal for all datasets, emphasizing 

the need to evaluate different tokenizers for each data and learning task. 

K-mers were extensively used in bioinformatics and related machine-learning applications (Orozco-Arias 

et al. 2021; ValizadehAslani et al. 2020; Alam and Chowdhury 2020). A biological sequence can be 

represented as a vector, in which each entry counts the number of occurrences of a specific K-mer (and the 

size of that vector corresponds to the total number of possible K-mers). Such a vector can be considered as 

a set of features that embeds the sequence. As the size of the vector may be large, when K is high, feature 

selection is usually applied to maintain only informative K-mers, e.g., Orozco-Arias et al. (2021). 

Representing a sequence as a vector of K-mer frequencies is inherently different from the process of 

embedding as used in current NLP research. In NLP-based embedding, additional information regarding 

both the position and the context of the different tokens is stored (Dufter, Schmitt, and Schütze 2022). As 

shown in our work, NLP-based embedding can be accomplished using different tokenization methods, and 

one method to tokenize biological sequence is to use a dictionary comprising all K-mers of a fixed size (the 

“words” and “pairs” tokenization methods). It is thus important to distinguish K-mer based feature 

representation of a biological sequence from K-mer based NLP-style embedding. Of note, our results show 

that using a fixed size K-mer for NLP-style embeddings is inferior to using data-driven tokenizers.  

Transformers often cannot analyze sequences above a specific threshold length. It is common to segment 

longer sequences to subsequences shorter than this threshold, thus bypassing this restriction. However, this 

fragmentation prohibits the model from analyzing the entire input data, and can thus potentially decrease 

performance. Our results show that fragmentation can sometimes be avoided by tokenizing the data, i.e., 

tokenization allows architectures to expend their capacity to substantially longer proteins and DNA 

sequences, as was recently shown in DNABERT-2 (Zhou et al. 2023). 

In this study we also demonstrated that important biological information can be extracted for post-analysis 

of trained models applied to specific learning tasks. For example, we could detect specific signatures for 

protein super-family classification. One of the benefits of the proposed approach compared to motifs in the 
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form of profile hidden Markov models is that it does not rely on a multiple sequence alignment, which may 

be unreliable, especially when highly diverged sequences are analyzed. 

In this study, we examined the impact of tokenization at the molecular level. We hypothesize that 

tokenization has the potential to be applied to various forms of discrete biological data, such as genes 

(Miller, Stern, and Burstein 2022). Additionally, the incorporation of character compression into classical 

algorithms used in biology, such as Blast (Altschul et al. 1990) and Kraken-2 (Wood, Lu, and Langmead 

2019), should be considered in order to decrease running times.  

This work represents the initial phase of studying how tokenization impacts biological language models. 

Our study demonstrates that data-driven tokenizers should be considered, both for accuracy and for length 

reduction. Our work also shows that there is no single data-driven tokenizer that outperformed all the others. 

We demonstrate that the effect of tokenizing the sequence depends on the specific task, the data type and 

size, and the tokenization algorithm applied. In future work, it would be interesting to compare Large 

Biological Models (LBMs) performance which were pretrained with various tokenization algorithms, i.e., 

we speculate that in the future there will be several alternative LBMs, each pretrained with a different 

tokenization algorithm, and users can test which LBM is best suited to their computational task. Our study 

further suggests that future studies comparing the performance of new emerging transformer architectures 

on biological data, should include different tokenizers as a critical component in their evaluation. 

Data Availability 
Code, data and trained tokenizers are available on https://github.com/technion-cs-

nlp/BiologicalTokenizers. 
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