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Probing classifiers have emerged as one of the prominent methodologies for interpreting and
analyzing deep neural network models of natural language processing. The basic idea is simple
— a classifier is trained to predict some linguistic property from a model’s representations — and
has been used to examine a wide variety of models and properties. However, recent studies have
demonstrated various methodological limitations of this approach. This article critically reviews
the probing classifiers framework, highlighting their promises, shortcomings, and advances.

1 Introduction

The opaqueness of deep neural network models of natural language processing (NLP)
has spurred a line of research into interpreting and analyzing them. Analysis methods
may aim to answer questions about a model’s structure or its decisions. For instance,
one might ask which parts of a neural neural model are responsible for certain linguistic
properties, or which parts of the input led the model to make a certain decision. A
common methodology to answer questions about the structure of models is to associate
internal representations with external properties, by training a classifier on said repre-
sentations that predicts a given property. This framework, known as probing classifiers,
has emerged as a prominent analysis strategy in many studies of NLP models.1

Despite its apparent success, the probing classifiers paradigm is not without limi-
tations. Critiques have been made about comparative baselines, metrics, the choice of
classifier, and the correlational nature of the method. In this short article, we first define
the probing classifiers framework, taking care to consider the various involved compo-
nents. Then we summarize the framework’s shortcomings, as well as improvements and
advances. This article provides a roadmap for NLP researchers who wish to examine
probing classifiers more critically and highlights areas in need of additional research.

2 The Probing Classifiers Framework

On the surface, the probing classifiers idea seems straightforward. We take a model that
was trained on some task, such as a language model. We generate representations using
the model, and train another classifier that takes the representations and predicts some
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property. If the classifier performs well, we say that the model has learned information
relevant for the property. However, upon closer inspection, it turns out that much more
is involved here. To see this, we now define this framework a bit more formally.

Let us denote by f : x 7→ ŷ a model that maps input x to output ŷ. We call this
model the original model. It is trained on some annotated dataset DO = {x(i), y(i)},
which we refer to as the original dataset. Its performance is evaluated by some measure,
denoted PERF(f,DO). The function f is typically a deep neural network that generates
intermediate representations of x, for example fl(x) may denote the representation of
x at layer l of f .2 A probing classifier g : fl(x) 7→ ẑ maps intermediate representations
to some property ẑ, which is typically some linguistic feature of interest. As a concrete
example, f might be a sentiment analysis model, mapping a text x to a sentiment label
y, while g might be a classifier mapping intermediate representations fl(x) to part-
of-speech tags z. The classifier g is trained and evaluated on some annotated dataset
DP = {x(i), z(i)}, and some performance measure PERF(g, f,DO,DP ) (e.g., accuracy) is
reported. Note that the performance measure depends on the probing classifier g and
the probing dataset DP , as well as on the original model f and the original dataset DO.

From an information theoretic perspective, training the probing classifier g can be
seen as estimating the mutual information between the intermediate representations
fl(x) and the property z (Belinkov 2018, p. 42; Pimentel et al. 2020b; Zhu and Rudzicz
2020), which we write I(z;h), where z is a random variable ranging over properties z
and h is a random variable ranging over representations fl(x).

The above careful definition of the probing classifiers framework reveals that it
is comprised of multiple concepts and components, depicted in Figure 1a. The choice
of each such component, and the interactions between them, lead to non-trivial ques-
tions regarding the design and implementation of any probing classifier experiment.
Before we turn to these considerations in Section 4, we briefly review some history and
promises of probing classifiers in the next section.

3 Promises

Perhaps the first studies that can be cast in the framework of probing classifiers are by
Köhn (2015) and Gupta et al. (2015), who trained classifiers on static word embeddings
to predict various morphological, syntactic, and semantic properties. Their goals were to
provide more nuanced evaluations of word embeddings compared to prior work, which
only integrated them in downstream tasks. Other early work classified hidden states of a
recurrent neural network machine translation system into morpho-syntactic properties
(Shi, Padhi, and Knight 2016). They were motivated by the end-to-end nature of the neu-
ral machine translation system, which, compared to a phrase/syntax-based system, did
not explicitly integrate such properties (so they ask: “What kind of syntactic information
is learned, and how much?”). The framework has taken up a more stable form by several
groups who studied sentence embeddings (Ettinger, Elgohary, and Resnik 2016; Adi
et al. 2017; Conneau et al. 2018) and recurrent/recursive neural networks (Belinkov et al.
2017a; Hupkes, Veldhoen, and Zuidema 2018).3 The same idea had been concurrently
proposed for investigating computer vision models (Alain and Bengio 2016).

2 We use fl(x) to refer more generally to any intermediate output of f when applied to x, so the
framework includes analyses of other model components, such as attention weights (Clark et al. 2019).

3 For chronological completeness, workshop and preprint versions of Hupkes, Veldhoen, and Zuidema
(2018) and Adi et al. (2017) appeared earlier (Veldhoen, Hupkes, and Zuidema 2016; Adi et al. 2016).
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x 7→ y Original task
DO = {x(i), y(i)} Original dataset
f : x 7→ y Original model
PERF(f,DO) Performance on the original task
fl(x) Representations of x from f
fl(x) 7→ z Probing task
DP = {x(i), z(i)} Probing dataset
g : fl(x) 7→ z Probing classifier
PERF(g, f,DO,DP ) Probing performance

(a) Basic Components.

f̄ : x 7→ y Skyline model or upper bound
f : x 7→ y Baseline model
x 7→ yRand Control task (Hewitt and Liang 2019)
c : fl(x) 7→ c(fl(x)) Control function (Pimentel et al. 2020b)
DP,Rand Control task dataset (Hewitt and Liang 2019)
DO,z Control dataset (Ravichander, Belinkov, and Hovy 2021)
SEL(g, f,DO,DP ,DP,Rand) Probing selectivity (Hewitt and Liang 2019)
G(z,h, c) Information gain w.r.t control function (Pimentel et al. 2020b)
MDL(g, f,DO,DP ) Probe minimum description length (Voita and Titov 2020)
f̃l(x) Representations of x from f , after an intervention

(b) Additional Components.

Figure 1: Components comprising the probing classifiers framework.

A main motivation in this body of work is the opacity of the representations.4

Compared to performance on downstream tasks, probing classifiers aim to provide
more nuanced evaluations w.r.t simple properties.5 Indeed, following the initial studies, a
plethora of work has applied the framework to various models and properties, allevi-
ating some of the opacity, at least in terms of properties encoded in the representations.
See Belinkov and Glass (2019) for a comprehensive survey up to early 2019.6

However, what can be inferred from successful probing performance is less obvi-
ous. Good probing performance is often taken to indicate several potential situations:
good quality of the representations w.r.t the probing property,7 readability of information
found in the representations,8 or its extractability.9 In contrast, low probing performance
is taken to indicate that the probing property is not present in the representations or is

4 “little is known about the information that is captured by different sentence embedding learning
mechanisms” (Adi et al. 2017); “a poor understanding of what they are capturing” (Conneau et al. 2018);
“little is known about what and how much these models learn.” (Belinkov et al. 2017a).

5 “fine-grained measurement of some of the information encoded in sentence embeddings” (Adi et al.
2017); “simple linguistic properties of sentences” (Conneau et al. 2018); “assessing the specific semantic
information that is being captured in sentence representations” (Ettinger, Elgohary, and Resnik 2016).

6 There have also been numerous other studies using the probing classifier framework as is. For a partial
list, see https://github.com/boknilev/nlp-analysis-methods/issues/5. For recent
analyses focusing on the BERT model (Devlin et al. 2019), see Rogers, Kovaleva, and Rumshisky (2020).

7 “evaluate the quality of the trained classifier on the given task as a proxy to the quality of the extracted
representations” (Belinkov et al. 2017a).

8 “If the classifier succeeds, it means that the pre-trained encoder is storing readable tense information into
the embeddings it creates” (Conneau et al. 2018).

9 “testing for extractability of semantic information by testing classification accuracy..” (Ettinger, Elgohary,
and Resnik 2016); “if a sequential model is computing certain information, or merely keeping track of it,
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not usable.10 Sometimes, good performance is taken to indicate how the original model
achieves its behavior on the original task (Hupkes, Veldhoen, and Zuidema 2018). A
linear probing classifier is thought to reveal features that are used by the original model,
while a more complex probe “bears the risk that the classifier infers features that are not
actually used by the network” (Hupkes, Veldhoen, and Zuidema 2018). Often, different
terms (quality, readability, usability, etc.) appear abstractedly without precise definitions.

As we shall see, some of the above assumptions and conclusions are better ac-
counted for than others by the probing classifiers paradigm. Indeed, the community
has recently taken a more critical look at the methodology, which we turn to now.

4 Shortcomings and Advances

In light of the promises discussed above, this section reviews several limitations of
the probing classifiers framework, as well as existing proposals for addressing them.
We discuss comparisons and controls, how to choose the probing classifier, which
causal claims can be made, the difference between datasets and tasks, and the need to
define the probed properties. We formalize new additional components (Figure 1b) in
a unified framework, along with the basic components (Figure 1a).

4.1 Comparisons and controls

A first concern with the framework is how to interpret the results of a probing clas-
sifier experiment. Suppose we run such an experiment and obtain a performance of
PERF(g, f,DO,DP ) = 87.8. Is that a high/low number? What should we compare it to?
We will denote a baseline model with f and an upper bound or skyline model with f̄ .

Some studies compare with majority baselines (Belinkov et al. 2017a; Conneau et al.
2018) or with classifiers trained on representations that are thought to be simpler than
what the original model f produces, such as static word embeddings (Belinkov et al.
2017a; Tenney et al. 2019). Others advocate for random baselines, training the classifier
g on a randomized version of f (Conneau et al. 2018; Zhang and Bowman 2018; Tenney
et al. 2019; Chrupała, Higy, and Alishahi 2020). These studies show that even random
features capture significant information that can be decoded by the probing classifier,
so performance on learned features should be viewed in such a perspective.

On the other hand, some studies compare PERF(g, f,DO,DP ) to skylines or upper
bounds f̄ , in an attempt to provide a point of comparison for how far probing per-
formance is from the possible performance on the task of mapping x 7→ z. Examples
include estimating human performance (Conneau et al. 2018), reporting the state of the
art from the literature (Liu et al. 2019), or training a dedicated model to predict z from
x, without restricting to (frozen) representations from f (Belinkov et al. 2017b).

Others have proposed to design controls for possible confounders. Hewitt and
Liang (2019) observe that the probing performance PERF(g, f,DO,DP ) may tell us more
about the probe g than about the model f . The probe g may memorize information from
DP , rather than evaluate information found in representations f(x). They design control
tasks, which a probe may only solve by memorizing. In particular, they randomize
the labels in DP , creating a new dataset DP,Rand. Then, they define selectivity as the
difference between the probing performance on the probing task and the control task:

it should be possible to extract this information from its internal state space” (Hupkes, Veldhoen, and
Zuidema 2018).

10 “low accuracy suggests this information is not represented in the hidden state” (Hupkes, Veldhoen, and
Zuidema 2018); “if we cannot train a classifier to predict some property of a sentence based on its vector
representation, then this property is not encoded in the representation (or rather, not encoded in a useful
way, considering how the representation is likely to be used)” (Adi et al. 2017).
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SEL(g, f,DO,DP ,DP,Rand) = PERF(g, f,DO,DP )− PERF(g, f,DO,DP,Rand). They show
that probes may have high accuracy, but low selectivity, and that linear probes tend to
have high selectivity, while non-linear probes tend to have low selectivity. This indicates
that high accuracy of non-linear probes may come from memorization of surface pat-
terns by the probe g, rather than from information captured in the representations fl(x).
The control tasks introduced by Hewitt and Liang are particularly suited for word-level
properties z as they evaluate memorization of word types; it is less clear how to apply
this idea more broadly, such as in sentence-level properties.

Taking an information-theoretic perspective on probing, Pimentel et al. (2020b)
proposed to use control functions instead of control tasks in order to compare probes.
Their control function is any function applied to the representation, c : fl(x) 7→ c(fl(x)),
and they compare the information gain, which is the difference in mutual information
between the property z and the representation before and after applying the control
function: G(z,h, c) = I(z;h)− I(z; c(h)). While Pimentel et al. (2020b) posit that their
control function are a better criterion than the control tasks of Hewitt and Liang (2019),
subsequent work showed that the two criteria are almost equivalent, both theoretically
and empirically (Zhu and Rudzicz 2020).

Another kind of control is proposed by Ravichander, Belinkov, and Hovy (2021),
who design control datasets, where the linguistic property z is not discriminative w.r.t
the original task of mapping x to y. That is, they modify DO and create a new dataset,
DO,z , where all examples have the same value for property z. Intuitively, a model f
trained on DO,z should not pick up information about z, since it is not useful for the
task of f . They show that a probe g may learn to predict property z incidentally, even
when it is not discriminative w.r.t the original task of mapping x 7→ y, casting doubts on
causal claims concerning the effect that a property encoded in the representation may
have on the original task. While they create control datasets for probing sentence-level
information, the same idea can be applied to word-level properties.

4.2 Which classifier to use?

Another concern is the choice of the probing classifier g: What should be its structure?
What role does its expressivity play in drawing conclusions about the original model f?

Some studies advocate for using simple probes, such as linear classifiers (Alain and
Bengio 2016; Hupkes, Veldhoen, and Zuidema 2018; Liu et al. 2019; Hall Maudslay et al.
2020). Somewhat anecdotally, a few studies observed better performance with more
complex probes, but reported similar relative trends (Conneau et al. 2018; Belinkov
2018). That is, a ranking PERF(g, f1,DO,DP ) > PERF(g, f2,DO,DP ), of two represen-
tations f1(x) and f2(x), holds across different probes g. However, this pattern may be
flipped under alternative measures, such as selectivity (Hewitt and Liang 2019).

Several studies considered the complexity of the probe g in more detail. Pimentel
et al. (2020b) argue that, in order to give the best estimate about the information that
model f has about property z, the most complex probe should be used. In a more
practical view, Voita and Titov (2020) propose to measure both the performance of the
probe g and its complexity, by estimating the minimum description length of the code
required to transmit property z knowing the representations fl(x): MDL(g, f,DO,DP ).
Note that this measure again depends on the probe g, the model f , and their respective
datasets DO and DP . They found that MDL provides more information about how
a probe g works, for instance by revealing differences in complexity of probes when
performing control tasks from DP,Rand, as in Hewitt and Liang (2019). Pimentel et al.
(2020a) argue that probing work should report the possible trade-offs between accuracy
and complexity, along a range of probes g, and call for using probes that are both
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simple and accurate. While they study a number of linear and non-linear multi-layered
perceptrons, one could extend this idea to other classes of probes. Indeed, Cao, Sanh,
and Rush (2021) design a pruning-based probe, which learns a mask on weights of f
and obtains a better accuracy–complexity trade-off than a non-linear probe.

Another line of work proposes methods to extract linguistic information from a
trained model without learning additional parameters. In particular, much work has
used some sort of pairwise importance score between words in a sentence as a signal for
inferring linguistic properties, either full syntactic parsing or more fine-grained proper-
ties such as coreference resolution. These scores may come from attention weights (Ra-
ganato and Tiedemann 2018; Clark et al. 2019; Mareček and Rosa 2019; Htut et al. 2019)
or from distances between word representations, perhaps including perturbations of the
input sentence (Wu et al. 2020). The pairwise scores can feed into some general parsing
algorithm, such as the Chu-Liu Edmonds algorithm (1965; 1967). Alternatively, some
work has used representational similarity analysis (Kriegeskorte, Mur, and Bandettini
2008) to measure similarity between word or sentence representations and syntactic
properties, both local properties like determining a verb’s subject (Lepori and McCoy
2020) and more structured properties like inferring the full syntactic tree (Chrupała
and Alishahi 2019). Also related is work on clustering representations w.r.t linguistic
property and classifying by cluster assignment (Zhou and Srikumar 2021). This line of
work can be seen as a parameter-less probing classifier g: a linguistic property is inferred
from internal model components (representations, attention weights), without needing
to learn new parameters. Thus, such work avoids some of the issues about what the
probe learns. Additionally, from the perspective of an accuracy–complexity trade-off,
such work should perhaps be placed on the low end of the complexity axis, although
the complexity of the parsing algorithm could also be taken into account.

4.3 Correlation vs. causation

A main limitation of the probing classifier paradigm is the disconnect between the
probing classifier g and the original model f . They are trained in two different steps,
where f is trained once and only used to generate feature representations fl(x), which
are fed into g. Once we have fl(x), we get a probing performance from g, which tells us
something about the information in fl(x). However, in the process, we have forgotten
about the original task assigned to f , which was to predict y. This raises an important
question, which early work has largely taken for granted (Section 3): Does model f use
the information discovered by probe g? In other words, the probing framework may
indicate correlations between representations fl(x) and linguistic property z, but it does
not tell us whether this property is involved in predictions of f . Indeed, several studies
pointed out this limitation (Belinkov and Glass 2019), including reports on a mismatch
between performance of the probe, PERF(g, f,DO,DP ), and performance of the original
model, PERF(f,DO) (Vanmassenhove, Du, and Way 2017). In contrast, Lovering et al.
(2021) find that extractability of a property according to MDL(g, f,DO,DP ) is correlated
with f making predictions consistent with that property. Relatedly, Tamkin et al.
(2020) find a discrepancy between features fl(x) obtaining high probing performance,
PERF(g, f,DO,DP ), and features identified as important when fine-tuning f while per-
forming the probing task fl(x) 7→ z. They reveal this by randomizing the weights of
specific layers when fine-tuning f , which can be seen as a kind of intervention.

Indeed, a number of studies have proposed improvements to the probing classifier
paradigm, which aim to discover causal effects by intervening in representations of the
model f . Giulianelli et al. (2018) use gradients from g to modify the representations in
f and evaluate how this change affects both the probing performance and the original
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model performance. In their case, f is a language model and g predicts subject–verb
number agreement. They find that their intervention increases probing performance,
as may be expected. Interestingly, while in the general language modeling case the
intervention has a small effect on the original model performance, PERF(f,DO), they
find an increase in this performance on examples designed to assess number agree-
ment. They conclude that probing classifiers can identify features that are actually used
by the model. Tucker, Qian, and Levy (2021) also use probe gradients to update the
representations fl(x) w.r.t z, resulting in what they call counterfactual representations,
and measure the effect on other properties. Similarly, Elazar et al. (2021) remove certain
properties z (such as parts of speech or syntactic dependencies) from representations
in f by repeatedly training (linear) probing classifiers g and projecting them out of the
representation. This results in a modified representation f̃l(x), which has less informa-
tion about z. They compare the probing performance to the performance on the original
task (in their case, language modeling) after the removal of said features. They find that
high probing performance PERF(g, f,DO,DP ) does not necessarily entail a large drop
in original task performance after their removal, that is, PERF(f̃ ,DO). Thus, contrary
to Giulianelli et al. (2018), they conclude that probing classifiers do not always identify
features that are actually used by the model. In a similar vein, Feder et al. (2021) remove
properties z from representations in f by training g adversarially. At the same time,
another probing classifier gC is trained positively, aiming to control for properties zC
that should not be removed from f . A major difference from standard probing classifiers
work is the continued updating of f . They find that they can accurately estimate the
effect of properties z on downstream tasks performed by f when it is fine-tuned.11

4.4 Datasets vs. tasks

The probing paradigm aims to study models performing some task (f : x 7→ ŷ) via a
classifier performing another task (g : fl(x) 7→ ẑ). However, in practice these tasks are
operationalized via finite datsaets. Ravichander, Belinkov, and Hovy (2021) point out
that datasets are imperfect proxies for tasks. Indeed, the effect of the choice of datasets—
both the original dataset DO and the probing dataset DP —has not been widely studied.
Furthermore, we ideally want to disentangle the role of each dataset from the role of the
original model f and probing classifier g. Unfortunately, models f tend to be trained
on different datasets DO, making statements about models confounded with issues of
datasets. Some prior work acknowledged that conclusions can only be made about the
existing trained models, not about general architectures (Liu et al. 2019). However, in an
ideal world, we would compare different architectures {f i} trained on the same dataset
DO or the same f trained on different datasets {Di

O}. Concerning the latter, Zhang et al.
(2021) found that models require less data to encode syntactic and semantic properties
compared to commonsense knowledge. More such experiments are currently lacking.

The effect of the probing dataset DP —its size, composition, etc.—is similarly not
well studied. While some work reported results on multiple datasets when predicting
the same property z (e.g., Belinkov et al. 2017a), more careful investigations are needed.

4.5 Properties must be pre-defined

Finally, inherent to the probing classifier framework is determining a property z to
probe for. This limits the investigation in multiple ways: It constrains the work to

11 Other studies that perform interventions to interpret NLP models without involving probing classifiers
(e.g., Bau et al. 2019; Lakretz et al. 2019; Vig et al. 2020) are left out of the present scope.
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existing annotated datasets, which are often limited to English and certain properties.
It also requires focusing on properties z that are thought to be relevant to the task of
mapping x 7→ y a-priori, potentially leading to biased conclusions. In an isolated effort
to alleviate this limitation, Michael, Botha, and Tenney (2020) propose to learn latent
clusters useful for predicting a property z. They discover clusters corresponding to
known properties (such as personhood) as well as new categories, which are not usually
annotated in common datasets. Still, probing classifiers are so far mainly useful when
one has prior expectations about which properties z might be relevant w.r.t a given task.

5 Summary

Given the various limitations discussed in this article, one might ask: What are probing
classifiers good for? In line with the original motivation to alleviate the opacity of learned
representations, work using probing classifiers has characterized them along a range
of fine-grained properties. However, we have discussed several reservations regarding
which insights can be drawn from a probing classifier experiment. Absolute claims
about representation quality seem difficult to make. Yet recent improvements to the
framework, such as better controls and metrics, allow us to make relative claims and
answer questions like how extractable a property is from a representation. And causal
approaches (Section 4.3) may reveal which properties are used by the original model.

One might hope that probing classifier experiments would suggest ways to improve
the quality of the probed model or to direct it to be better tuned to some use or task.
Presently, there are few such successful examples. For instance, earlier results showing
that lower layers in language models focus on local phenomena while higher layers
focus on global ones (using probing classifiers and other methods) motivated Cao et al.
(2020) to decouple a question-answering model, such that lower layers process the ques-
tion and the passage independently and higher layers process them jointly. An analysis
of redundancy in language models (again using probing classifiers and other methods)
motivated an efficient transfer-learning procedure (Dalvi et al. 2020). An analysis of
phonetic information in layers of a speech recognition systems (Belinkov and Glass
2017) partly motivated Krishna, Toshniwal, and Livescu (2019) to propose multi-task
learning with phonetic supervision on intermediate layers. Belinkov et al. (2020) discuss
how their probing experiments can guide the selection of which machine translation
models to use when translating specific languages. Finally, when considering using
the representations for some downstream task, probing experiments can indicate which
information is encoded, or can easily be extracted, from these representations.

To conclude, our critical review of the probing classifiers framework reveals that it is
more complicated than may seem. When designing a probing classifier experiment, we
advise researchers to take the various controls and alternative measures into account.
Naturally, one should clearly define the original task/dataset/model and the probing
task/dataset/classifier. It is important to set upper and lower bounds, and to consider
proper controls, via either control tasks (for word-level properties) or datasets (for
sentence-level properties). Depending on goals, one may want to measure the probe’s
complexity (if ease of extractability is in question), report the accuracy–complexity
trade-off (when designing new probes), or perform an intervention (to measure usage
of information by the original model). When possible, using parameter-free probes
may circumvent some of the challenges with parameterized probes. We do not argue
that every study must perform all the various controls and report all the alternative
measures summarized here. However, future work seeking to use probing classifiers
would do well to take into account the complexity of the framework, its apparent
shortcomings, and available advances.

8



Yonatan Belinkov Probing Classifiers

Acknowledgments
This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 448/20) and
by an Azrieli Foundation Early Career Faculty Fellowship.

References
Adi, Yossi, Einat Kermany, Yonatan Belinkov,

Ofer Lavi, and Yoav Goldberg. 2016.
Fine-grained analysis of sentence
embeddings using auxiliary prediction
tasks. CoRR, abs/1608.04207.

Adi, Yossi, Einat Kermany, Yonatan Belinkov,
Ofer Lavi, and Yoav Goldberg. 2017.
Fine-grained analysis of sentence
embeddings using auxiliary prediction
tasks. In International Conference on
Learning Representations (ICLR).

Alain, Guillaume and Yoshua Bengio. 2016.
Understanding intermediate layers using
linear classifier probes. arXiv preprint
arXiv:1610.01644v3.

Bau, Anthony, Yonatan Belinkov, Hassan
Sajjad, Nadir Durrani, Fahim Dalvi, and
James Glass. 2019. Identifying and
controlling important neurons in neural
machine translation. In International
Conference on Learning Representations.

Belinkov, Yonatan. 2018. On Internal
Language Representations in Deep Learning:
An Analysis of Machine Translation and
Speech Recognition. Ph.D. thesis,
Massachusetts Institute of Technology.

Belinkov, Yonatan, Nadir Durrani, Fahim
Dalvi, Hassan Sajjad, and James Glass.
2017a. What do neural machine
translation models learn about
morphology? In Proceedings of the 55th
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 861–872, Association for
Computational Linguistics, Vancouver,
Canada.

Belinkov, Yonatan, Nadir Durrani, Fahim
Dalvi, Hassan Sajjad, and James Glass.
2020. On the linguistic representational
power of neural machine translation
models. Computational Linguistics,
46(1):1–52.

Belinkov, Yonatan, Sebastian Gehrmann, and
Ellie Pavlick. 2020. Interpretability and
analysis in neural NLP. In Proceedings of
the 58th Annual Meeting of the Association
for Computational Linguistics: Tutorial
Abstracts, pages 1–5, Association for
Computational Linguistics, Online.

Belinkov, Yonatan and James Glass. 2017.
Analyzing hidden representations in
end-to-end automatic speech recognition
systems. In Advances in Neural Information
Processing Systems, volume 30, pages

2441–2451, Curran Associates, Inc.
Belinkov, Yonatan and James Glass. 2019.

Analysis methods in neural language
processing: A survey. Transactions of the
Association for Computational Linguistics,
7:49–72.

Belinkov, Yonatan, Lluís Màrquez, Hassan
Sajjad, Nadir Durrani, Fahim Dalvi, and
James Glass. 2017b. Evaluating layers of
representation in neural machine
translation on part-of-speech and semantic
tagging tasks. In Proceedings of the Eighth
International Joint Conference on Natural
Language Processing (Volume 1: Long
Papers), pages 1–10, Asian Federation of
Natural Language Processing, Taipei,
Taiwan.

Cao, Qingqing, Harsh Trivedi, Aruna
Balasubramanian, and Niranjan
Balasubramanian. 2020. DeFormer:
Decomposing pre-trained transformers for
faster question answering. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages
4487–4497, Association for Computational
Linguistics, Online.

Cao, Steven, Victor Sanh, and Alexander
Rush. 2021. Low-complexity probing via
finding subnetworks. In Proceedings of the
2021 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 960–966, Association for
Computational Linguistics, Online.

Chrupała, Grzegorz and Afra Alishahi. 2019.
Correlating neural and symbolic
representations of language. In Proceedings
of the 57th Annual Meeting of the Association
for Computational Linguistics, pages
2952–2962, Association for Computational
Linguistics, Florence, Italy.

Chrupała, Grzegorz, Bertrand Higy, and Afra
Alishahi. 2020. Analyzing analytical
methods: The case of phonology in neural
models of spoken language. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages
4146–4156, Association for Computational
Linguistics, Online.

CHU, Y. 1965. On the shortest arborescence
of a directed graph. Science Sinica,
14:1396–1400.

Clark, Kevin, Urvashi Khandelwal, Omer
Levy, and Christopher D. Manning. 2019.
What does BERT look at? an analysis of

9



Computational Linguistics Volume 1, Number 1

BERT’s attention. In Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages
276–286, Association for Computational
Linguistics, Florence, Italy.

Conneau, Alexis, German Kruszewski,
Guillaume Lample, Loïc Barrault, and
Marco Baroni. 2018. What you can cram
into a single $&!#* vector: Probing
sentence embeddings for linguistic
properties. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages
2126–2136, Association for Computational
Linguistics, Melbourne, Australia.

Dalvi, Fahim, Hassan Sajjad, Nadir Durrani,
and Yonatan Belinkov. 2020. Analyzing
redundancy in pretrained transformer
models. In Proceedings of the 2020
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages
4908–4926, Association for Computational
Linguistics, Online.

Danilevsky, Marina, Kun Qian, Ranit
Aharonov, Yannis Katsis, Ban Kawas, and
Prithviraj Sen. 2020. A survey of the state
of explainable AI for natural language
processing. In Proceedings of the 1st
Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and
the 10th International Joint Conference on
Natural Language Processing, pages
447–459, Association for Computational
Linguistics, Suzhou, China.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Association for
Computational Linguistics, Minneapolis,
Minnesota.

Edmonds, Jack. 1967. Optimum branchings.
Journal of Research of the national Bureau of
Standards B, 71(4):233–240.

Elazar, Yanai, Shauli Ravfogel, Alon Jacovi,
and Yoav Goldberg. 2021. Amnesic
probing: Behavioral explanation with
amnesic counterfactuals. Transactions of the
Association for Computational Linguistics,
9(0):160–175.

Ettinger, Allyson, Ahmed Elgohary, and
Philip Resnik. 2016. Probing for semantic
evidence of composition by means of
simple classification tasks. In Proceedings of
the 1st Workshop on Evaluating Vector-Space

Representations for NLP, pages 134–139,
Association for Computational
Linguistics, Berlin, Germany.

Feder, Amir, Nadav Oved, Uri Shalit, and
Roi Reichart. 2021. CausaLM: Causal
Model Explanation Through
Counterfactual Language Models.
Computational Linguistics, 47(2):333–386.

Giulianelli, Mario, Jack Harding, Florian
Mohnert, Dieuwke Hupkes, and Willem
Zuidema. 2018. Under the hood: Using
diagnostic classifiers to investigate and
improve how language models track
agreement information. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks
for NLP, pages 240–248, Association for
Computational Linguistics, Brussels,
Belgium.

Gupta, Abhijeet, Gemma Boleda, Marco
Baroni, and Sebastian Padó. 2015.
Distributional vectors encode referential
attributes. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing, pages 12–21,
Association for Computational
Linguistics, Lisbon, Portugal.

Hall Maudslay, Rowan, Josef Valvoda, Tiago
Pimentel, Adina Williams, and Ryan
Cotterell. 2020. A tale of a probe and a
parser. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 7389–7395, Association
for Computational Linguistics, Online.

Hewitt, John and Percy Liang. 2019.
Designing and interpreting probes with
control tasks. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages
2733–2743, Association for Computational
Linguistics, Hong Kong, China.

Htut, Phu Mon, Jason Phang, Shikha Bordia,
and Samuel R Bowman. 2019. Do
attention heads in bert track syntactic
dependencies? arXiv preprint
arXiv:1911.12246.

Hupkes, Dieuwke, Sara Veldhoen, and
Willem Zuidema. 2018. Visualisation and
’diagnostic classifiers’ reveal how
recurrent and recursive neural networks
process hierarchical structure. Journal of
Artificial Intelligence Research, 61:907–926.

Köhn, Arne. 2015. What’s in an embedding?
analyzing word embeddings through
multilingual evaluation. In Proceedings of
the 2015 Conference on Empirical Methods in
Natural Language Processing, pages

10



Yonatan Belinkov Probing Classifiers

2067–2073, Association for Computational
Linguistics, Lisbon, Portugal.

Kriegeskorte, Nikolaus, Marieke Mur, and
Peter Bandettini. 2008. Representational
similarity analysis - connecting the
branches of systems neuroscience.
Frontiers in Systems Neuroscience, 2:4.

Krishna, Kalpesh, Shubham Toshniwal, and
Karen Livescu. 2019. Hierarchical
multitask learning for CTC-based speech
recognition. arXiv preprint
arXiv:1807.06234.

Lakretz, Yair, German Kruszewski, Theo
Desbordes, Dieuwke Hupkes, Stanislas
Dehaene, and Marco Baroni. 2019. The
emergence of number and syntax units in
LSTM language models. In Proceedings of
the 2019 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages
11–20, Association for Computational
Linguistics, Minneapolis, Minnesota.

Lepori, Michael and R. Thomas McCoy. 2020.
Picking BERT’s brain: Probing for
linguistic dependencies in contextualized
embeddings using representational
similarity analysis. In Proceedings of the
28th International Conference on
Computational Linguistics, pages 3637–3651,
International Committee on
Computational Linguistics, Barcelona,
Spain (Online).

Liu, Nelson F., Matt Gardner, Yonatan
Belinkov, Matthew E. Peters, and Noah A.
Smith. 2019. Linguistic knowledge and
transferability of contextual
representations. In Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long and Short Papers), pages 1073–1094,
Association for Computational
Linguistics, Minneapolis, Minnesota.

Lovering, Charles, Rohan Jha, Tal Linzen,
and Ellie Pavlick. 2021. Predicting
inductive biases of pre-trained models. In
International Conference on Learning
Representations.
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