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ABSTRACT

Self-supervised speech representation learning has recently been
a prosperous research topic. Many algorithms have been pro-
posed for learning useful representations from large-scale unlabeled
data, and their applications to a wide range of speech tasks have
also been investigated. However, there has been little research
focusing on understanding the properties of existing approaches.
In this work, we aim to provide a comparative study of some of
the most representative self-supervised algorithms. Specifically,
we quantify the similarities between different self-supervised rep-
resentations using existing similarity measures. We also design
probing tasks to study the correlation between the models’ pre-
training loss and the amount of specific speech information con-
tained in their learned representations. In addition to showing
how various self-supervised models behave differently given the
same input, our study also finds that the training objective has a
higher impact on representation similarity than architectural choices
such as building blocks (RNN/Transformer/CNN) and directional-
ity (uni/bidirectional). Our results also suggest that there exists a
strong correlation between pre-training loss and downstream perfor-
mance for some self-supervised algorithms.

Index Terms— Self-supervised learning, speech representation
learning, unsupervised pre-training, comparative analysis

1. INTRODUCTION

Self-supervised learning is a form of unsupervised learning that
treats the input or modifications of the input as learning targets.
Thanks to this property, self-supervised learning can leverage large-
scale unlabeled data for training, and has enjoyed success in learning
high-level representations of data from different modalities [1, 2, 3].

Recently, self-supervised approaches for learning speech repre-
sentations have received great research attention. Methods like con-
trastive predictive coding [4], autoregressive predictive coding [5],
masked predictive coding [6, 7, 8], and problem-agnostic speech en-
coder [9] have been shown to be capable of learning representations
that capture high-level properties of speech that are not easily ac-
cessible from surface features such as audio waveforms and spec-
trograms. These methods have been further extended or improved
for tackling a wide range of speech applications, including speech
recognition [10, 11, 12, 13, 14], speech translation [15, 16], speaker
verification [17], unsupervised unit discovery [18], and unsupervised
phoneme segmentation [19], to name a few.

Despite the recent progress in self-supervised speech represen-
tation learning, most of the effort is made to develop new algorithms
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or adapt existing methods to particular tasks, and only a few stud-
ies focus on reviewing existing approaches. In this work, we aim
to provide a comparative study on some of the most representative
self-supervised algorithms: contrastive predictive coding (CPC), au-
toregressive predictive coding (APC), and masked predictive cod-
ing (MPC). Our analysis focuses on the following two aspects. First,
we hope to understand the similarity of different self-supervised rep-
resentations. To carry out this study, we adopt two similarity mea-
sures for quantifying the similarity of two given representations.
Although such a similarity analysis approach cannot discern abso-
lute facts about the representations, it allows us to compare repre-
sentations without subscribing to any specific type of information,
and helps us answer questions like: Given the same input, how
similar are different self-supervised representations? Which model-
ing choices, e.g., building blocks (RNN/Transformer/CNN) and di-
rectionality (uni/bidirectional), have a higher impact on similarity?
How much does a model change when it is trained on more data?

Our second area of investigation examines, for each self-
supervised algorithm, how well its pre-training loss correlates with
downstream performance. We use phonetic and speaker classifica-
tion as probing tasks to measure the amount of phonetic and speaker
information contained in the representations as a function of pre-
training loss. This study could be useful for model selection if there
exists a strong correlation between them.

Only a few studies have focused on analyzing self-supervised
models. Chung et al. (2020) proposed to incorporate vector quanti-
zation layers to restrict model capacity during pre-training so as to
uncover a model’s preference in preserving speech information for
achieving a maximal self-supervised objective [20]. Blandón and
Räsänen (2020) studied the correlation between the self-supervised
loss of APC and CPC and their performance on a phoneme discrimi-
nation task [21], which has the same goal as our second study. How-
ever, neither of these two works investigated the similarity between
different self-supervised representations. For the correlation study,
we also consider more self-supervised models with diverse modeling
choices as compared to previous work [21].

Our analysis yields the following insights:
• The objective has a higher impact on representation similarity

than model architecture.
• Under the same objective, a model’s directionality

(uni/bidirectional) affects representation similarity more than
its building blocks (RNN/Transformer/CNN).

• Both APC and MPC have a stronger correlations between pre-
training loss and phonetic and speaker classification perfor-
mance than CPC does.

• While all models benefit from increasing the size of unlabeled
training data, CPC is found to make use of these additional
data more efficiently than APC and MPC.



2. ANALYSIS METHODS

We study two aspects of self-supervised speech representation learn-
ing: (1) the similarity between representations learned by various
models, and (2) how well their self-supervised pre-training loss cor-
relates with downstream performance. We describe our methods for
analyzing these two aspects in Sections 2.1 and 2.2, respectively.

2.1. Approaches for measuring representation similarity

Consider a pre-trained self-supervised model M . For an acous-
tic feature sequence (in our case, a log Mel spectrogram) x =
(x1,x2, ...,xT ), where xt ∈ R80, from a dataset D, the model M
transforms x into a representation M(x) = (m1,m2, ...,mT ),
where mt ∈ R512. Given two representations extracted by two
self-supervised models M (1) and M (2), a similarity measure out-
puts sim(M (1)(x),M (2)(x)) ∈ R that quantifies their similarity.
Note that this approach does not require D to be annotated.

Existing similarity measures are proposed to capture different
similarity notions. Some focus on capturing the localization of
information of two representations, which is usually done by com-
paring the behaviors of two individual elements m

(1)
i and m

(2)
j

from M (1)(x) and M (2)(x), respectively [22]. Other measures em-
phasize distributivity of information and find correlations between
two representations M (1)(x) and M (2)(x) directly [23, 24, 25, 26]:
if two representations behave similarly over all of their elements,
their similarity will be high even if no two individual elements have
similar behaviors. In this work we focus on the latter case and adopt
linear centered kernel alignment (lincka; [24]) and singular vector
canonical correlation analysis (svcca; [25]) as our similarity mea-
sures. We choose these two since they are found to be comparable or
better than other measures in prior studies for analyzing contextual
word representation models [27].

2.2. Probing tasks for measuring phonetic and speaker content

We consider phonetic and speaker classification for measuring the
amount of phonetic and speaker content contained in a represen-
tation [28, 29]. Given a self-supervised model M pre-trained on
an unlabeled dataset D1, we use M to extract features M(x) =
(m1,m2, ...,mT ), where mt ∈ R512 for another dataset D2, and
train a linear classifier using the extracted features as input.

For phonetic classification, the goal is to predict the phone iden-
tity of each frame in an input utterance. For speaker classification,
the extracted features are first averaged before being fed to the clas-
sifier, and the goal is to predict the speaker identity of the utterance.
The frame-level phone error rate and utterance-level speaker error
rate on the test set ofD2 indicate the amount of phonetic and speaker
content contained in the representation, respectively.

3. EXPERIMENTAL SETUP

3.1. Self-supervised models

We consider some of the most representative models, including con-
trastive predictive coding (CPC) [4], autoregressive predictive cod-
ing (APC) [5], and masked predictive coding (MPC) [6, 7, 8].

While there are additional models that have successfully been
applied to speech applications, most of them are more or less an
extension of the above models. For example, Rivière et al. (2020)
improved CPC by modifying its batch normalization mechanism

Table 1: Information about various implementations of APC, MPC,
and CPC to be compared in this work. All RNN and Transformer
models have a hidden size of 512 (256 for forward and 256 for back-
ward if bidirectional). For CPC, cpc-mixed spk-rnn draws
negative samples across speakers, while cpc-within spk-rnn
and cpc-within spk-cnn draw negative samples from the same
utterance as the target future frame. All building blocks have 3 layers
unless otherwise stated. TRF stands for Transformer.

Model notation Objective Building block Uni- or Bi-dir

apc-fw-rnn APC GRU Uni-dir
apc-fw+bw-rnn APC GRU Bi-dir
apc-fw-trf APC TRF decoder Uni-dir
apc-fw+bw-trf APC TRF decoder Bi-dir
mpc-birnn MPC GRU Bi-dir
mpc-trf MPC TRF encoder Bi-dir
cpc-mixed spk-rnn CPC GRU Uni-dir
cpc-within spk-rnn CPC GRU Uni-dir
cpc-within spk-cnn CPC Same as [30] -

and replacing the linear prediction head with a 1-layer Trans-
former network [31]. Kawakami et al. (2020) made CPC bidirec-
tional [32]. wav2vec [30] is CPC with a convolutional architecture.
DeCoAR [12] could be viewed as a bidirectional version of APC.
Chung and Glass (2020) proposed an auxiliary loss serving as a reg-
ularizer to help APC generalize better [33]. Liu et al. (2020) applied
SpecAugment [34] to improve MPC’s masking techniques [35].
Jiang et al. (2020) combined APC and MPC to form a unified pre-
training objective [13]. We leave the explorations of these extensions
for future work. Below we briefly review CPC, APC, and MPC.

CPC & APC Contrastive predictive coding (CPC) and autoregres-
sive predictive coding (APC) share a similar methodology as both
use an autoregressive model to learn representations through con-
ditioning on the past context to make predictions of future informa-
tion. Their main difference lies in the manner in which they optimize
the autoregressive model: while APC attempts to predict a future
frame via L1 regression, CPC incorporates a proposal distribution
for drawing negative samples, and learns representations containing
information that most discriminates the future frame from the nega-
tive samples using a loss based on noise-contrastive estimation [36].
We mainly follow the original papers [4, 5] for implementing the
models with small modifications described in [5].

Since the objectives of APC and CPC are based on the notion
of future prediction, bidirectional architectures are not applicable.
A simple method for making these models have access to context
from both directions is to separately train a forward and backward
APC/CPC model and concatenate their output representations as the
final representations (similar to how ELMo [37] is trained for learn-
ing contextualized word embeddings). This method has been ex-
plored for APC and CPC in [12] and [32], respectively.

MPC Inspired by the masked language modeling technique from
BERT [2], masked predictive coding (MPC) directly trains a bidirec-
tional architecture by first masking parts of the input signals and then
predicting them through conditioning on context from both direc-
tions. Similar to APC, MPC is optimized by minimizing the frame-
wise L1 distance between the predicted output and the original in-
put before masking. Transformer encoder [6, 8] and bidirectional
RNN [7] have both been used to implement MPC.

To account for multiple factors in model design (objective,
RNN/Transformer/CNN, uni/bidirectional), we consider the imple-
mentations of APC, MPC, and CPC as listed in Table 1.



3.2. Pre-training datasets

We use LibriSpeech [38], which contains about 1k hours of speech
audio, for pre-training all self-supervised models. We also use the
unlab-6k subset from Libri-Light [39], which contains about 6k
hours of speech audio, for additional experiments in Section 4.3. We
use 80-dimensional log Mel spectrograms as input acoustic features,
i.e., xt ∈ R80. All models are trained for 10 epochs using Adam
with a batch size of 32 and a learning rate of 10−3. During pre-
training, only the speech portion from the dataset is used.

3.3. Probing datasets

Representation similarity measures For calculating representation
similarity with lincka and svcca (introduced in Section 2.1), we
use the si284 subset from Wall Street Journal (WSJ)and the train
set from TIMIT.

Phonetic and speaker classification We carry out both classifi-
cation tasks on WSJ. For phonetic classification, there are a total
of 42 phone categories, and we follow the standard split of WSJ, us-
ing 90% of si284 for training, 10% for validation, and reporting
frame-level phone error rate on dev93. The phone alignments are
generated with a speaker adapted GMM-HMM model. For speaker
classification, we follow [11] and consider a 259-class classifica-
tion task where each class corresponds to an unique speaker, us-
ing 80% of si284 for training, the other 10% for validation, and
reporting utterance-level speaker error rate on the rest 10%. We note
that speaker classification is not a typical task for WSJ, and only
serves as a sanity check for the presence of speaker information. For
both tasks, the classifier is a linear logistic regression trained for 10
epochs using SGD with a batch size of 32 and a fixed learning rate
of 10−4. All reported error rates are an average of 5 runs, of which
variances are negligibly small and not included.

4. RESULTS AND ANALYSIS

4.1. Similarity of different self-supervised representations

Figure 1 shows the heatmap of similarities between representations
learned by various self-supervised models. Brighter colors indicate
higher similarity between two representations. We also include the
similarity between each self-supervised representation and the sur-
face feature, i.e., log Mel spectrogram. Due to space limit, we only
show the result according to similarity measure lincka on WSJ.1

We find all heatmaps exhibiting consistent patterns regardless of the
probing dataset and similarity measure, and all self-supervised repre-
sentations are very different from the surface feature. The heatmaps
reveal the following insights.

Objective affects similarity more than architecture. The most
evident pattern from the heatmaps is that there is always a greater
similarity within an objective than across objectives, indicated
by the bright block diagonal. For example, apc-fw-rnn is
always more similar to apc-fw+bw-rnn, apc-fw-trf, and
apc-fw+bw-trf than to any MPC and CPC variants, even when
apc-fw-rnn and cpc-mixed spk-rnn/cpc-within spk-rnn
share the same building block and directionality. This conclusion
also holds for the MPC- and CPC-family. Representations learned
by generative-based objectives, i.e., variants of APC and MPC, are
also more similar to one another than to the CPC variants.

1More similarity heatmaps are available at https://github.com/
iamyuanchung/ICASSP21-Similarity-Supplementary

Fig. 1: Similarity heatmap of various self-supervised representations
on WSJ according to lincka. Similarity values are also annotated.

Directionality affects similarity more than building block.
When the objective is the same, we find that model’s directional-
ity (uni/bidirectional) has a higher impact on representation similar-
ity than its building block (RNN/Transformer/CNN). For instance,
the similarity between apc-fw-rnn and apc-fw-trf, which
are both unidirectional while the former uses RNNs and the lat-
ter uses Transformers, is higher than that between apc-fw-rnn
and apc-fw+bw-rnn, which both use RNNs while the former is
unidirectional and the latter is bidirectional. Furthermore, as may
be expected, making APC bidirectional reduces its difference with
MPC, which is indicated by the fact that mpc-birnn is more sim-
ilar to apc-fw+bw-rnn than to apc-fw-rnn, and mpc-trf is
more similar to apc-fw+bw-trf than to apc-fw-trf.

Source of negative samples affects similarity more than architec-
ture. When focusing on the CPC-family, we find that the proposal
distribution of where the negative samples are drawn from is more
impactful on representation similarity than the building block. This
is indicated by the fact that cpc-within spk-rnn is more sim-
ilar to cpc-within spk-cnn than to cpc-mixed spk-rnn,
where the two models in the former case share the same proposal
distribution but use different building blocks, and the two models in
the latter case share the same building block but incorporate different
proposal distributions.

4.2. Correlation between self-supervised loss and phonetic &
speaker classification performance

Experiments so far have only revealed the similarities between
different self-supervised representations. We further uncover the
correlation between self-supervised loss during pre-training and the
amount of phonetic and speaker information contained in the repre-
sentations, measured by their performance on phonetic and speaker
classification (Section 2.2). We only consider apc-fw-rnn,
mpc-birnn, cpc-mixed spk-rnn, and cpc-within spk-rnn
in this experiment for a comparison only in terms of their objec-
tives (except mpc-birnn, which has to be bidirectional). We
calculate the Pearson correlation coefficients r between loss value
and both phone and speaker error rates, as listed in Table 2.



Table 2: Pearson correlation coefficients between the self-
supervised loss and the phone and speaker error rates. ∗ denotes sta-
tistical significance at ρ < 0.05.

Model Phone Speaker

apc-fw-rnn 0.989∗ 0.950∗

mpc-birnn 0.885∗ 0.847∗

cpc-mixed spk-rnn 0.643∗ 0.762∗

cpc-within spk-rnn 0.675∗ -0.071

Overall, APC and MPC are found to have a stronger correlation
between the self-supervised loss and both their phonetic and speaker
classification performance than CPC. In particular, apc-fw-rnn
features the strongest correlation among the four considered self-
supervised models. Our finding aligns with [21], where the autore-
gressive loss of APC is found to be more correlated with the ABX-
score of a phone discrimination task than the InfoNCE loss of CPC.

It is noteworthy that the loss of cpc-within spk-rnn has
almost no correlation with speaker classification performance. This
result seems natural since the model always draws negative samples
from the same utterance as the positive sample, so speaker informa-
tion is never found to be useful for distinguishing them and thus not
learned by the representation. On the other hand, the proposal dis-
tribution of cpc-mixed spk-rnn allows the model to learn from
negative samples coming from both the same and different utterances
as the positive sample, meaning that both phonetic and speaker in-
formation could be relevant for discriminating them. Therefore, we
find the loss of cpc-mixed spk-rnn is still correlated with the
speaker error rate to some degree.

We emphasize that our findings here are not meant to claim any
self-supervised approach to be the best, but aim to provide some re-
sults for other researchers for future reference. For example, APC
and MPC’s strong correlation between their self-supervised loss and
phonetic and speaker classification performance could be useful for
model selection even during the pre-training stage, since a lower
pre-training loss would indicate a richer phonetic and speaker repre-
sentation. CPC, though exhibiting a smaller correlation between its
self-supervised loss and phonetic and speaker classification perfor-
mance, could still be extremely powerful when the downstream task
is known and thus the pre-training proposal distribution can be de-
termined aforehand, as shown by its recent impressive performance
on semi-supervised speech recognition [3].

4.3. Effect of increasing unlabeled data for pre-training

One of the biggest advantages of self-supervision is its capability to
leverage large-scale unlabeled data for representation learning. Here
we train apc-fw-rnn, mpc-birnn, cpc-mixed spk-rnn,
and cpc-within spk-rnn on 2k, 4k, and 6k hours of speech
audio, all sampled from the unlab-6k subset of the Libri-Light
corpus, and calculate the similarities between each of these variants
and their counterpart trained on the original 960 hours LibriSpeech
audio according to lincka. Results are shown in Table 3.

For all models, their representations become more dissimilar
when more data are used for pre-training. We also find that CPC’s
representations change more than those of APC and MPC when in-
creasing the data size. For instance, the similarity “only” drops
from 0.957 to 0.923 for apc-fw-rnnwhen increasing the data size
from 2k hours to 6k hours, while for cpc-mixed spk-rnn, the
similarity drops from 0.911 to 0.837.

Table 3: Representation similarity between self-supervised models
pre-trained on∼1k hours of audio and their counterparts pre-trained
on increasing amounts of audio according to lincka.

Model Hours of pre-training audio

∼2k ∼4k ∼6k

apc-fw-rnn 0.957 0.935 0.923
mpc-birnn 0.940 0.939 0.925
cpc-mixed spk-rnn 0.911 0.883 0.837
cpc-within spk-rnn 0.920 0.896 0.861

Changes in representation similarity can be attributed to encod-
ing details of speech other than phonetic and speaker information
that might be unnecessary, such as background noises. To confirm
whether such changes in representation similarity correspond to an
actual richer phonetic and speaker representation, we again use pho-
netic and speaker classification performance to quantify the amount
of phonetic and speaker information contained in the representation.

Encouragingly, we observe that most self-supervised models’
performance on both tasks is improved when being trained on more
data. The only exception is cpc-within spk-rnn on speaker
classification, which is expected as speaker information is never
found relevant for discriminating positive and negative samples dur-
ing its training. However, its performance on phonetic classification
obtains the largest gain among all considered self-supervised mod-
els. Concerning cpc-mixed spk-rnn, in addition to showing
improvement on both tasks, the drop of its speaker error rate is also
the largest among all models. Intuitively, having more data means
that CPC models are provided with more comparisons of negative
and positive samples to learn from, and our results seem to suggest
that this is a more effective way for learning representations when
large amounts of unlabeled data are available, as opposed to attempt-
ing to reconstruct details of the speech signals as APC and MPC
models do. That being said, both generative- and contrastive-based
objectives also benefit from having more unlabeled training data.

5. CONCLUSIONS

We have analyzed representations learned by contrastive predictive
coding (CPC), autoregressive predictive coding (APC), and masked
predictive coding (MPC) through the lens of similarity analysis. Ex-
tensive experiments have been conducted to study the impact of dif-
ferent modeling choices for training self-supervised models, the ef-
fect of the size of unlabeled training data, and how well the self-
supervised loss correlates with phonetic and speaker classification
performance. We have found that the self-supervised objective has
a much higher impact on representation similarity than architectural
choices such as building blocks (RNN/Transformer/CNN) and direc-
tionality (uni/bidirectional). We have also observed that APC has the
strongest correlation between its self-supervised loss and phonetic
and speaker classification performance, which is useful for model
selection. Finally, while all self-supervised models benefit from hav-
ing more training data, CPC is found to learn from the additional data
more efficiently than APC and MPC.
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