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Abstract

While many studies have shown that linguistic information is encoded in word representations, few have studied

individual neurons in these representations, to show how and in which neurons (dimensions) it is encoded. Such

knowledge can be used to control the model’s output or prune the model, and it can give us parameter-level

explanations of the model’s decisions.

Among individual neurons studies, the common approach is to use an external probe to rank neurons according

to their relevance to some linguistic attribute, and to evaluate the obtained ranking using the same probe that

produced it. We show two pitfalls in this methodology:

The ranking evaluation approach confounds distinct factors: probe quality and ranking quality. We show that

this approach is flawed, as certain probes with an intentionally bad ranking can surpass others with a good

ranking.

It focuses on encoded information, rather than information that is used by the model. We show that these are

not the same, by developing a new ranking evaluation approach that focuses on causality using interventions.

We compare two recent ranking methods and a simple one we introduce, and evaluate them with regard to both

of these aspects.

Rankings and Data

Wework with three methods to rank neurons according to their importance for a morpho-

logical attribute:

Linear [1]: Train a linear classifier on word representations to learn some task F . Then,

use the trained classifier’s weights to rank the neurons according to their importance

for F .

Gaussian [3]: Train a generative classifier on the task F , based on the assumption that

each dimension in {1, ..., d} is Gaussian-distributed. Then, greedily select the most

informative neuron, according to the classifier’s performance, at every iteration.

Probeless: For every attribute label z ∈ Z , calculate q(z), the mean vector of all

representations of words that possess the attribute and the value z. Then, calculate the

element-wise difference between the mean vectors,

r =
∑

z,z′∈Z

|q(z) − q(z′)| (1)

and obtain a ranking by arg-sorting r, i.e., the first neuron in the ranking corresponds to

the highest value in r.

Figure 1. Neuron ranking

Illustration. We rank the

neurons of the

representation of the word

“was” according to their

importance to some

attribute, e.g., tense.

We use top-to-bottom and bottom-to-top versions of each of the rankings, as well as a random ranking baseline,

ending up with 7 rankings overall.

Data

9 different languages from the UD treebanks: Arabic, Bulgarian, English, Finnish, French, Hindi, Russian, Spanish

and Turkish.

Tasks: predictions of morphological attributes: Animacy, Aspect, Case, Definiteness, Gender, Mood, Number,

Part of Speech, Person, Polarity, Possession, Tense, Voice.

Representation: layers 2, 7 and 12 of a pre-trained M-BERT [2] model.

Overall: 156 configs (language×attribute×layer).
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Overlaps

Multilingual models capture some universal concept of morphological attributes, independent of language.

Significant overlaps between important neurons for the same attribute across languages, using Probeless.

For Gaussian we do not see the same behaviour, meaning it is less consistent across languages.

(a) Layer 7 neurons overlap, using Probeless ranking. (b) Layer 7 neurons overlap, using Gaussian ranking.

Ranking Evaluation by Probing

Figure 3. Ranking evaluation by probing: The probe is trained using only the k-highest ranked neurons.

On the left, the Gaussian probe using its worst ranking surpasses the Linear probe using its best ranking. On the

right, it is the opposite: The Linear probe using itsworst ranking surpasses the Gaussian probe using its best ranking.

These phenomena demonstrate that this evaluation approach is flawed.

(a) Hindi part of speech layer 12 (G>L pattern). (b) Russian animacy layer 2 (L>G pattern).

Figure 4. Solid lines are top-to-bottom rankings; dashed are random rankings; dotted are bottom-to-top. Some lines are omitted for

clarity.

Ranking Evaluation by Interventions

Figure 5. Ranking evaluation by interventions.

For a representation h with attribute label z and ranking Π(d), we modify the k-highest-ranked neurons by the

ranking, Π(d)[k], by subtracting the mean value of z and adding the mean value of another label z′, multiplied

by some factor. Formally:

hΠ(d)[k] = hΠ(d)[k] + αk(q(z′)Π(d)[k] − q(z)Π(d)[k]) (2)

where q is the same as in Probeless ranking, z′ is an attribute label such that z 6= z′, and α ∈ Rd is a log-scaled
coefficients vector in the range [0, β], such that the coefficient of the highest-ranked neuron is β and that of the

lowest-ranked neuron is 0, and β is a hyperparameter.

If the predicted word is different than the original one, then the model uses the information we modified.

We look for words which have the same lemma as the original one, but a different attribute value, and mark

them as CLWV (Correct Lemma, Wrong Value). For example, if the word “makes” becomes “made” when

intervening for tense, then it counts as a CLWV, but if it becomes “make” or “prepared” it does not.

Probeless provides the best CLWV in most configs, and does so using a smaller number of neurons, in contrast

to probing experiments. It implies that encoded information and used information are not necessarily the

same.

Figure 6. Spanish gender layer 2, intervention results with β = 8.
Solid lines are error rates, dashed are CLWVs.

Linear Gaussian Probeless

English

tense

0.39, 60
0.37, 50
0.51, 60

0.26, 150
0.34, 70
0.41, 120

0.38, 30
0.34, 30
0.46, 30

Spanish

number

0.28, 110
0.26, 50
0.23, 150

0.19, 100
0.20, 40
0.16, 140

0.35, 60
0.25, 30
0.40, 80

Spanish

gender

0.29, 50
0.29, 50
0.26, 130

0.25, 80
0.31, 50
0.16, 110

0.37, 50
0.33, 30
0.35, 60

Table 1. CLWV value at saturation point and number of neurons

modified at the saturation point, using the translation method.

Conclusion

We show that previous ranking evaluation approach is flawed, as the probe quality can heavily affect results.

We propose a new ranking evaluation approach, that focuses on causality using interventions in the

representations space.

We present a new ranking method: Probeless, which is simple and fast to obtain, and overcomes other rankings

methods in causal evaluation.

We observe that multilingual models capture some universal concept of certain morphological attributes,

independent of language.


