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ABSTRACT

Large language models (LLMs) often produce errors, including factual inaccura-
cies, biases, and reasoning failures, collectively referred to as “hallucinations”.
Recent studies have demonstrated that LLMs’ internal states encode information
regarding the truthfulness of their outputs, and that this information can be utilized
to detect errors. In this work, we show that the internal representations of LLMs
encode much more information about truthfulness than previously recognized. We
first discover that the truthfulness information is concentrated in specific tokens,
and leveraging this property significantly enhances error detection performance.
Yet, we show that such error detectors fail to generalize across datasets, implying
that—contrary to prior claims—truthfulness encoding is not universal but rather
multifaceted. Next, we show that internal representations can also be used for pre-
dicting the types of errors the model is likely to make, facilitating the development
of tailored mitigation strategies. Lastly, we reveal a discrepancy between LLMs’
internal encoding and external behavior: they may encode the correct answer, yet
consistently generate an incorrect one. Taken together, these insights deepen our
understanding of LLM errors from the model’s internal perspective, which can
guide future research on enhancing error analysis and mitigation.1

1 INTRODUCTION

The ever-growing popularity of large language models (LLM) across many domains has brought a
significant limitation to center stage: their tendency to “hallucinate” – which is often used to de-
scribe the generation of inaccurate information. But what are hallucinations, and what causes them?
A considerable body of research has sought to define, taxonomize, and understand hallucinations
through extrinsic, behavioral analysis, primarily examining how users perceive such errors (Bang
et al., 2023; Ji et al., 2023; Huang et al., 2023a; Rawte et al., 2023). However, this approach does
not adequately address how these errors are encoded within the LLMs. Alternatively, another line
of work has explored the internal representations of LLMs, suggesting that LLMs encode signals
of truthfulness (Kadavath et al., 2022; Li et al., 2024; Chen et al., 2024, inter alia). However,
these analyses were typically restricted to detecting errors—determining whether a generated output
contains inaccuracies—without delving deeper into how such signals are represented and could be
leveraged to understand or mitigate hallucinations.

In this work, we reveal that the internal representations of LLMs encode much more information
about truthfulness than previously recognized. Through a series of experiments, we train classifiers
on these internal representations to predict various features related to the truthfulness of generated
outputs. Our findings reveal the patterns and types of information encoded in model representations,
linking this intrinsic data to extrinsic LLM behavior. This enhances our ability to detect errors
(while understanding the limitations of error detection), and may guide the development of more
nuanced strategies based on error types and mitigation methods that make use of the model’s internal
knowledge. Our experiments are designed to be general, covering a broad array of LLM limitations.
While the term “hallucinations” is widely used, it lacks a universally accepted definition (Venkit
et al., 2024). Our framework adopts a broad interpretation, considering hallucinations to encompass

∗Corresponding author; Work partially done during internship at Apple.
1Our code is available in https://github.com/technion-cs-nlp/LLMsKnow.

1

https://github.com/technion-cs-nlp/LLMsKnow


Published as a conference paper at ICLR 2025

all errors produced by an LLM, including factual inaccuracies, biases, common-sense reasoning
failures, and other real-world errors. This approach enables us to draw general conclusions about
model errors from a broad perspective.

Our first step is identifying where truthfulness signals are encoded in LLMs. Previous studies have
suggested methods for detecting errors in LLM outputs using intermediate representations, logits,
or probabilities, implying that LLMs may encode signals of truthfulness (Kadavath et al., 2022; Li
et al., 2024; Chen et al., 2024). Focusing on long-form generations, which reflect real-world usage
of LLMs, our analysis uncovers a key oversight: the choice of token used to extract these signals
(Section 3). We find that truthfulness information is concentrated in the exact answer tokens –
e.g., “Hartford” in “The capital of Connecticut is Hartford, an iconic city...”. Recognizing this nu-
ance significantly improves error detection strategies across the board, revealing that truthfulness
encoding is stronger than previously observed.

From this point forward, we concentrate on our most effective strategy: a classifier trained on in-
termediate LLM representations within the exact answer tokens, referred to as ‘probing classifiers’
(Belinkov, 2021). This approach helps us explore what these representations reveal about LLMs.
Our demonstration that a trained probing classifier can predict errors suggests that LLMs encode
information related to their own truthfulness. However, we find that probing classifiers do not gen-
eralize across different tasks (Section 4). Generalization occurs only within tasks requiring similar
skills (e.g., factual retrieval), indicating the truthfulness information is “skill-specific” and varies
across different tasks. For tasks involving different skills, e.g., sentiment analysis, these classifiers
are no better–or worse–than logit-based uncertainty predictors, challenging the idea of a “universal
truthfulness” encoding proposed in previous work (Marks & Tegmark, 2023; Slobodkin et al., 2023).
Instead, our results indicate that LLMs encode multiple, distinct notions of truth. Thus, deploying
trainable error detectors in practical applications should be undertaken with caution.

We next find evidence that LLMs encode not only error detection signals but also more nuanced
information about error types. Delving deeper into errors within a single task, we taxonomize its
errors based on responses across repeated samples (Section 5). For example, the same error being
consistently generated is different from an error that is generated occasionally among many other
distinct errors. Using a different set of probing classifiers, we find that error types are predictable
from the LLM representations, drawing a connection between the models’s internal representations
and its external behavior. This classification offers a more nuanced understanding of errors, enabling
developers to predict error patterns and implement more targeted mitigation strategies.

Finally, we find that the truthfulness signals encoded in LLMs can also differentiate between correct
and incorrect answers for the same question (Section 6). Results highlight a significant misalign-
ment between LLM’s internal representations and its external behavior in some cases. The model’s
internal encoding may identify the correct answer–yet it frequently generates an incorrect re-
sponse. This discrepancy reveals that the LLM’s external behavior may misrepresent its abilities,
potentially pointing to new strategies for reducing errors by utilizing its existing strengths. Overall,
our model-centric framework provides a deeper understanding of LLM errors, suggesting potential
directions for improvements in error analysis and mitigation.

2 BACKGROUND

Defining and characterizing LLM errors. The term “hallucinations” is widely used across var-
ious subfields such as conversational AI (Liu et al., 2022), abstractive summarization (Zhang et al.,
2019), and machine translation (Wang & Sennrich, 2020), each interpreting the term differently.
Yet, no consensus exists on defining hallucinations: Venkit et al. (2024) identified 31 distinct frame-
works for conceptualizing hallucinations, revealing the diversity of perspectives. Research efforts
aim to define and taxonomize hallucinations, distinguishing them from other error types (Liu et al.,
2022; Ji et al., 2023; Huang et al., 2023a; Rawte et al., 2023). On the other hand, recent scholarly
conversations introduce terms like “confabulations” (Millidge, 2023) and “fabrications” (McGowan
et al., 2023), attributing a possible “intention” to LLMs, although the notions of LLM “intention”
and other human-like traits are still debated (Salles et al., 2020; Serapio-Garcı́a et al., 2023; Harnad,
2024). These categorizations, however, adopt a human-centric view by focusing on the subjec-
tive interpretations of LLM hallucinations, which does not necessarily reflect how these errors are
encoded within the models themselves. This gap limits our ability to address the root causes of
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hallucinations, or to reason about their nature. For example, it is unclear whether conclusions about
hallucinations defined in one framework can be applied to another framework. Liang et al. (2024)
defined hallucinations as inconsistencies with the training data. While this approach engage with
the possible root causes of hallucinations, our study focuses on insights from the model itself, with-
out requiring training data access. Instead, we adopt a broad interpretation of hallucinations. Here,
we define hallucinations as any type of error generated by an LLM, including factual inaccuracies,
biases, failures in common-sense reasoning, and others.

Another line of research suggests that LLMs either encode information about their own errors (Ka-
davath et al., 2022; Azaria & Mitchell, 2023) or exhibit discrepancies between their outputs and
internal representations (Liu et al., 2023; Gottesman & Geva, 2024), indicating the presence of un-
derlying mechanisms not reflected in their final outputs. Moreover, Yona et al. (2024) found that
current LLMs fail to effectively convey their uncertainty through their generated outputs. Hence, we
propose shifting the focus from human-centric interpretations of hallucinations to a model-centric
perspective, examining the model’s intermediate activations.

Error detection in LLMs. Error detection is a longstanding task in NLP, crucial for maintaining
high standards in various practical applications and for constructing more reliable systems that en-
sure user trust (Bommasani et al., 2021). Over the years, many studies have proposed task-specific
solutions (see Section A.1). However, the recent shift towards general-purpose LLMs necessitates a
holistic approach capable of addressing any error type, rather than focusing on specific ones, making
it suitable for the diverse errors generated by these models.

A line of work has addressed this challenge by leveraging external knowledge sources (Lewis et al.,
2020; Gao et al., 2023) or an external LLM judge (Lin et al., 2021; Rawte et al., 2023) to identify
erroneous outputs. On the other hand, our work focuses on detection methods that rely solely on the
computations of the LLM—specifically, output logits, probabilities after softmax, and hidden states.

Error detection in LLMs is also closely linked to uncertainty estimation, where low certainty signals
potential inaccuracies and possible errors. Popular methods to derive calibrated confidence include
inspecting the model logit output values (Varshney et al., 2023; Taubenfeld et al., 2025), agree-
ment across multiple sampled answers (Kuhn et al., 2023; Manakul et al., 2023; Tian et al., 2023a),
verbalized probability (Tian et al., 2023b), and direct prompting (Kadavath et al., 2022).

Another line of work trains probing classifiers to discover and utilize truthfulness features. This ap-
proach has shown some success by probing the final token of an answer–either generated (Kadavath
et al., 2022; Snyder et al., 2023; Yuksekgonul et al., 2023; Zou et al., 2023; Yin et al., 2024; Chen
et al., 2024; Simhi et al., 2024; Gekhman et al., 2025) or not (Li et al., 2024; Marks & Tegmark,
2023; Burns et al., 2022; Azaria & Mitchell, 2023; Rateike et al., 2023). Others probe the final token
of the prompt before the response is generated (Slobodkin et al., 2023; Snyder et al., 2023; Simhi
et al., 2024; Gottesman & Geva, 2024). Many previous studies simplify the analysis by generating
answers in a few-shot setting or limiting generation to a single token. In contrast, we simulate real-
world usage of LLMs by allowing unrestricted answer generation. By probing exact answer tokens,
we achieve significant improvements in error detection.

3 BETTER ERROR DETECTION

This section presents our experiments on detecting LLM errors through their own computations,
focusing on token selection’s impact and introducing a method that outperforms other approaches.

3.1 TASK DEFINITION

Given an LLM M , an input prompt p and the LLM-generated response ŷ, the task is to predict
whether ŷ is correct or wrong. We assume that there is access to the LLM’s internal states (i.e.,
white-box setting), but no access to any external resources (e.g., search engine or additional LLMs).

We use a dataset D = {(qi, yi)}Ni=1, consisting of N question-label pairs, where {qi}Ni=1 represents
a series of questions (e.g., “What is the capital of Connecticut?”) and {yi}Ni=1 the corresponding
ground-truth answers (“Hartford”). For each question qi, we prompt the model M to generate a
response yi, resulting in the set of predicted answers {ŷi}Ni=1 (“The capital of Connecticut is Hart-
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ford...”). Next, to build our error-detection dataset, we evaluate the correctness of each generated
response ŷi by comparing it to the ground-truth label yi. This comparison yields a correctness label
zi ∈ {0, 1} (1 correct, 0 wrong). The comparison can be done either via automatic heuristics or with
the assistance of an instruct-LLM.2 Our error detection dataset is: {(qi, ŷi, zi)}Ni=1. Note that this
dataset is defined based on the analyzed LLM and its generated answers. Any instances where the
LLM refuses to answer are excluded, as these can easily be classified as incorrect.

3.2 EXPERIMENTAL SETUP

Datasets and models. We perform all experiments on four LLMs: Mistral-7b (Jiang et al.,
2023), Mistral-7b-instruct-v0.2 (denoted Mistral-7b-instruct), Llama3-8b (Touvron et al., 2023), and
Llama3-8b-instruct. We consider 10 different datasets spanning various domains and tasks: Triv-
iaQA (Joshi et al., 2017), HotpotQA with/without context (Yang et al., 2018), Natural Questions
(Kwiatkowski et al., 2019), Winobias (Zhao et al., 2018), Winogrande (Sakaguchi et al., 2021),
MNLI (Williams et al., 2018), Math (Sun et al., 2024), IMDB review sentiment analysis (Maas
et al., 2011), and a dataset of movie roles (movies) that we curate. We allow unrestricted response
generation to mimic real-world LLM usage, with answers decoded greedily. For more details on the
datasets and the prompts used to generate answers, refer to Appendix A.3.

Performance metric. We measure the area under the ROC curve to evaluate error detectors, pro-
viding a single metric that reflects their ability to distinguish between positive and negative cases
across many thresholds, balancing sensitivity (true positive rate) and specificity (false positive rate).

Error detection methods. We compare methods from both uncertainty and hallucinations literature.

• Aggregated probabilities / logits: Previous studies (Guerreiro et al., 2023; Kadavath et al.,
2022; Varshney et al., 2023; Huang et al., 2023b) aggregate output token probabilities or
logits to score LLM confidence for error detection. We implement several methods from the
literature, calculating the minimum, maximum, or mean of these values. The main paper
reports results for the most common approach, Logits-mean, and the best-performing one,
Logits-min, with additional baselines in Appendix B.

• P(True): Kadavath et al. (2022) showed that LLMs are relatively calibrated when asked to
evaluate the correctness of their generation via prompting. We implement this evaluation
using the same prompt.

• Probing: Probing classifiers involve training a small classifier on a model’s intermediate
activations to predict features of processed text (Belinkov, 2021). Recent studies show
their effectiveness for error detection in generated text (Kadavath et al., 2022, inter alia).
An intermediate activation is a vector hl,t from a specific LLM layer l and (either read or
generated) token t. Thus, each LLM generation produces multiple such activations. Fol-
lowing prior work, we use a linear probing classifier for error detection (Li et al., 2024, inter
alia) on static tokens: the last generated token (hl,−1), the one before it (hl,−2), and the final
prompt token (hl,k). The layer l is selected per token based on validation set performance.

For further details on the implementation of each method, refer to Appendix A.4.

Exact Answer Tokens. Existing methods often overlook a critical nuance: the token selection for
error detection, typically focusing on the last generated token or taking a mean. However, since
LLMs typically generate long-form responses, this practice may miss crucial details (Brunner et al.,
2020). Other approaches use the last token of the prompt (Slobodkin et al., 2023, inter alia), but
this is inherently inaccurate due to LLMs’ unidirectional nature, failing to account for the generated
response and missing cases where different sampled answers from the same model vary in cor-
rectness. We investigate a previously unexamined token location: the exact answer tokens, which
represent the most meaningful parts of the generated response. We define exact answer tokens as
those whose modification alters the answer’s correctness, disregarding subsequent generated con-
tent.3 Figure 1 illustrates the different token locations. In the following experiments, we implement

2For most datasets, we use heuristics to predict correctness, except for one case. See Appendix A.2.
3In practice, we do not use this definition for extracting the exact answer, but rather an instruct model in a

few-shot setting. Still, the definition is useful to manually verify that automatic extractions work as expected.
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<s> [INST] What is the capital of the U.S. state of Connecticut? [/INST]

The capital city of the U.S. state of Connecticut is Hartford. It's 
one of the oldest cities in the United States and was founded in 
1635. Hartford is located in the central part of the state and is 
home to several cultural institutions, universities, and 
businesses.</s>  

Figure 1: Example for the input and LLM output from the TriviaQA dataset, and the names of the
tokens that can be probed.

(a) TriviaQA (b) Winobias (c) Math

Figure 2: AUC values of a probe error detector across layers and tokens, Mistral-7b-instruct. Gen-
eration proceeds from left to right, with detection performance peaking at the exact answer tokens.

each error detection method with an “exact answer” version, demonstrating that it often improves
performance, especially in probing. Implementation details for detecting the exact answer token are
given in Appendix A.2.

3.3 RESULTS

Patterns of truthfulness encoding. We first focus on probing classifiers to gain insights into the
internal representations of LLMs. Specifically, we analyze the effects of layer and token selection
on the error detection performance of these probing classifiers. By systematically probing all model
layers, starting from the last question token to the final generated token, we observe consistent
truthfulness encoding patterns. Figure 2 shows AUC metrics of probes across Mistral-7b-Instruct
layers and tokens. Middle to later layers often yield the most effective probing results (see Appendix
B for more datasets and models), aligning with previous studies on truthfulness encoding (Burns
et al., 2022; CH-Wang et al., 2023) and transformer representations (nostalgebraist, 2020; Meng
et al., 2022; Geva et al., 2023). Regarding tokens, a strong truthfulness signal appears immediately
after the prompt, suggesting that this representation encodes information on the model’s general
ability to answer the question correctly. This signal weakens as text generation progresses but peaks
again at the exact answer tokens. Towards the end of the generation process, signal strength rises
again, though it remains weaker than at the exact answer tokens. These patterns are consistent across
nearly all datasets and models (see Appendix B), suggesting a general mechanism by which LLMs
encode and process truthfulness during text generation.
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Table 1: Comparison of error detection techniques using AUC metric, across different models and
datasets. The best-performing method is bolded. Using exact answer tokens is useful for many
cases, especially probing.

Mistral-7b-Instruct Llama 3-8b-Instruct
TriviaQA Winobias Math TriviaQA Winobias Math

Logits-mean 0.60 ±0.009 0.56 ±0.017 0.55 ±0.029 0.66 ±0.005 0.60 ±0.026 0.75 ±0.018

Logits-mean-exact 0.68 ±0.007 0.54 ±0.012 0.51 ±0.005 0.71 ±0.006 0.55 ±0.019 0.80 ±0.021

Logits-min 0.63 ±0.008 0.59 ±0.012 0.51 ±0.017 0.74 ±0.007 0.61 ±0.024 0.75 ±0.016

Logits-min-exact 0.75 ±0.006 0.53 ±0.013 0.71 ±0.009 0.79 ±0.006 0.61 ±0.019 0.89 ±0.018

p(True) 0.66 ±0.006 0.45 ±0.021 0.48 ±0.022 0.73 ±0.008 0.59 ±0.020 0.62 ±0.017

p(True)-exact 0.74 ±0.003 0.40 ±0.021 0.60 ±0.025 0.73 ±0.005 0.63 ±0.014 0.59 ±0.018

Probe @ token
Last generated [-1] 0.71 ±0.006 0.82 ±0.004 0.74 ±0.008 0.81 ±0.005 0.86 ±0.007 0.82 ±0.016

Before last generated [-2] 0.73 ±0.004 0.85 ±0.004 0.74 ±0.007 0.75 ±0.005 0.88 ±0.005 0.79 ±0.020

End of question 0.76 ±0.008 0.82 ±0.011 0.72 ±0.007 0.77 ±0.007 0.80 ±0.018 0.72 ±0.023

Exact 0.85 ±0.004 0.92 ±0.005 0.92 ±0.008 0.83 ±0.002 0.93 ±0.004 0.95 ±0.027

Error Detection Results. Next, we evaluate various error detection methods by comparing their
performance with and without the use of exact answer tokens. Table 1 compares the AUC across
three representative datasets (additional datasets and models in Appendix B, showing consistent pat-
terns). Here we present results for the last exact answer token, which outperformed both the first
exact answer token and the one preceding it, while the token following the last performed similarly.
Incorporating the exact answer token improves the different error detection methods in almost all
datasets. Notably, our probing technique (bottom line) consistently outperforms all other baselines
across the board. While we did not compare all existing error detection methods, the primary con-
clusion is that information about truthfulness is highly localized in specific generated tokens, and
that focusing on exact answer tokens leads to significant improvements in error detection.

4 GENERALIZATION BETWEEN TASKS

The effectiveness of a probing classifier in detecting errors suggests that LLMs encode information
about the truthfulness of their outputs. This supports using probing classifiers for error detection
in production, but their generalizability across tasks remains unclear. While some studies argue
for a universal mechanism of truthfulness encoding in LLMs (Marks & Tegmark, 2023; Slobod-
kin et al., 2023), results on probe generalization across datasets are mixed (Kadavath et al., 2022;
Marks & Tegmark, 2023; CH-Wang et al., 2023; Slobodkin et al., 2023; Levinstein & Herrmann,
2024)–observing a decline in performance, yet it remains significantly above random chance. Un-
derstanding this is essential for real-world applications, where the error detector may encounter
examples that significantly differ from those it was trained on. Therefore, we explore whether a
probe trained on one dataset can detect errors in others.

Our generalization experiments are conducted between all of the ten datasets discussed in Section 3,
covering a broader range of reaslistic task settings than previous work. This breadth of experiments
has not been previously explored, and is crucial considering the mixed findings in previous work.
We select the optimal token and layer combination for each dataset, train all probes using this com-
bination on other datasets, and then test them on the original dataset. We evaluate generalization
performance using the absolute AUC score, defined as max(auc, 1− auc), to also account for cases
where the learned signal in one dataset is reversed in another.

Results. Figure 3a shows the generalization results for Mistral-7b-instruct, with similar patterns
observed for other LLMs in Appendix C. In this context, values above 0.5 indicate successful gener-
alization. At first glance, the results appear consistent with previous research: most heatmap values
exceed 0.5, implying some degree of generalization across tasks. This observation supports the exis-
tence of a universal mechanism for decoding truthfulness, since the same linear directions—captured
by the probe—encode truthfulness information across many datasets. However, upon closer inspec-
tion, it turns out that most of this performance can be achieved by logit-based truthfulness detection,
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(a) Raw AUC values. Values above 0.5 indicate some
generalization.

(b) Performance (AUC) difference of the probe and
the logit-based method. Values above 0 indicate gen-
eralization beyond the logit-based method.

Figure 3: Generalization between datasets, Mistral-7b-instruct. After subtracting the logit-based
method’s performance, we observe that most datasets show limited or no meaningful generalization.

which only observes the output logits. Figure 3b presents the same heatmap after subtracting results
from our strongest logit-based baseline (Logit-min-exact). This adjusted heatmap reveals the probe’s
generalization rarely exceeds what can be achieved by examining logits alone. This suggests that the
observed generalization is not due to a universal internal encoding of truthfulness. Instead, it likely
arises from information already available through external features, such as logits. Past evidence for
generalization may therefore have been overstated.

Nonetheless, we do observe some successful generalization in tasks requiring similar skills, such
as parametric factual retrieval (TriviaQA, HotpotQA, Movies) and common-sense reasoning (Wino-
bias, Wingrande, NLI). This suggests that, although the overall pattern of truthfulness signals across
tokens appeared consistent across tasks (as observed in Section 3.3), LLMs have many “skill-
specific” truthfulness mechanisms rather than universal ones. However, some patterns remain unex-
plained, such as the asymmetric generalization from TriviaQA to Math tasks. Overall, our findings
indicate that models have a multifaceted representation of truthfulness. The internal mechanisms
responsible for solving distinct problem are implemented as different mechanisms (e.g., circuits)
within models (Elhage et al., 2021; Olah et al., 2023). Similarly, LLMs do not encode truthfulness
through a single unified mechanism but rather through multiple mechanisms, each corresponding to
different notions of truth. Further investigation is required to disentangle these mechanisms.

5 INVESTIGATING ERROR TYPES

Having established the limitations of error detection, we now shift to error analysis. Previously, we
explored types of LLM limitations across different tasks, noting both commonalities and distinctions
in their error representations. In this section, we focus on the types of errors LLMs make in a specific
task—TriviaQA—which represents factual errors, a commonly studied issue in LLMs (Kadavath
et al., 2022; Snyder et al., 2023; Li et al., 2024; Chen et al., 2024; Simhi et al., 2024).

5.1 TAXONOMY OF ERRORS

Intuitively, not all mistakes are identical. In one case, an LLM may consistently generate an incorrect
answer, considering it correct, while in another case, it could issue a best guess. To analyze errors
from the LLM’s perspective, we sample K = 30 responses at a temperature setting of T = 14 for
each example in the dataset and then analyze the resulting distribution of answers.

4We chose K = 30 as the overall correctness seemed to plateau around this point; see Appendix D. We
found that lower temperatures generally produced less truthful answers across repeated trials.
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Which 
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that ... is Maine, 
which ...
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knowledge on the correct answer.
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Gabby Logan …

Jacky
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…

20%

6%

The first ... is 
Clare Balding…

6%
Model

(c) The LLM generates many dif-
ferent answers, one of them is the
correct one which is generated a
small fraction of the resamples.

Figure 4: Different error types in free-form generation, exposed when resampled many times.

Figure 4 illustrates three representative error types. In one (Figure 4a), the model usually gives the
correct answer but occasionally make an error, implying correct information is present but sampling
may lead to mistakes. In another (Figure 4b, the model often responds incorrectly, though it is capa-
ble of providing the right answer, indicating some retained knowledge despite consistently making
the same error. In a third type (Figure 4c), the model generates a wide array of mostly incorrect
answers, reflecting low confidence in any generated answer.

More generally, we categorize the errors by logging three specific features for each example: (a)
the number of different answers generated; (b) the frequency of the correct answer; and (c) the
frequency of the most common incorrect answer. These features reveal the following error patterns:

• (A) Refuses to answer: The model responds that it cannot answer the question in at least
half the cases.

• (B) Consistently correct: Answers correctly in at least half of the cases. This category is
divided into: (B1) always correct; and (B2) mostly correct with occasional errors.

• (C) Consistently incorrect: Consistently generates the same incorrect response in at least
half of the cases. Similarly to type B, we subdivide this type into (C1) correct answer is
never produced; and (C2) correct answer appears at least once.

• (D) Two competing: Generates both correct and incorrect responses at similar rates–
difference in rates is 5 or less, and each response is generated at least 5 times.

• (E) Many answers: Generates over 10 distinct answers. Like types C and D, Subtypes
include (E1) correct answer is never generated; and (E2) correct answer is generated at
least once.

This taxonomy covers 96% of the errors in TriviaQA for Mistral-7b-instruct. For more qualitative
examples of each type of error, see Appendix D.3. Although some overlap exists between types,
our goal is to identify general patterns and explore their connection to the models’s internal repre-
sentations. For a discussion on the design choices of this taxonomy, refer to Appendix D.1. This
taxonomy classifies LLM errors based on an extrinsic, behavior-based analysis. Similarly, previous
work analyzed repeated samples to assess an LLM’s knowledge of the correct answer (Simhi et al.,
2024; Gekhman et al., 2024). Our approach is distinct because it also examines the nature of errors
that the LLM makes. Furthermore, as we discuss next, we analyze the connection between these
behavioral patterns and the model’s internal encoding.

5.2 PREDICTING ERROR TYPES

Our taxonomy offers an external, behavioral analysis of LLMs, which we complement by an intrinsic
evaluation. We explore whether LLMs encode information on potential error types within their
intermediate activations, offering a deeper insight into the underlying mechanisms. To investigate
this, we train a probe in a one-to-many setting, where a single probe identifies a specific error type
from all others. We use representations extracted from the answers produced via greedy decoding.

Table 2 presents the results. Our findings show that error types can be predicted from the interme-
diate representations of the greedy decoding generations, suggesting that they may capture not only
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Table 2: AUC scores for error type classification (TriviaQA). Error types are predictable from the
inner model representations, indicating the encoding of fine-grained information on errors.

Error type Mistral-7b Mistral-Instr-7b Llama3-8b Llama3-Instr-8b

(A) Refuses to answer 0.86±0.002 0.85±0.011 0.87±0.002 0.88±0.014

(B) Consistently correct 0.88±0.001 0.82±0.008 0.86±0.001 0.81±0.002

(C) Consistently incorrect 0.59±0.002 0.67±0.002 0.59±0.002 0.64±0.003

(D) Two competing 0.63±0.002 0.68±0.006 0.61±0.001 0.65±0.004

(E) Many answers 0.90±0.001 0.84±0.003 0.89±0.001 0.89±0.001

output correctness but also fine-grained information about potential errors. While detection perfor-
mance varies between types, the predictability of each type is valuable on its own, as it opens the
possibility of tailoring targeted interventions for specific error types. Additionally, although perfor-
mance on error types C and D is lower, it remains well above random, providing meaningful insights.
These results suggest that internal representations encode more than just binary correctness, reveal-
ing a nuanced taxonomy of error types and offering deeper insights into how these models process
and encode knowledge.

6 DETECTING THE CORRECT ANSWER

After identifying that models encode diverse truthfulness-related information, we examine how this
internal truthfulness aligns with their external behavior during response generation. To this end, we
use our probe,5 trained on error detection, to select an answer from a pool of 30 generated responses
to the same question. We then measure the model’s accuracy based on the selected answers. A
case where this accuracy does not significantly differ from traditional decoding methods (such as
greedy decoding), suggests that the LLM’s internal representation of truthfulness is consistent with
its external behavior. In simpler terms, that the model is generating answers that it also internally
considers as correct. Conversely, a case where using the probe alters performance either way, would
suggest a misalignment between the LLM’s internal representations and its actual behavior.

Experimental Setup The experiments were conducted on TriviaQA, Winobias, and Math. We
resample each model answer in the same strategy described in Section 5.1. The final chosen answer
is the one with the highest correctness probability, as assessed by the probe. We compare to three
baselines: (1) greedy decoding, (2) random selection from the K = 30 answer candidates; and (3)
majority vote wherein the most frequently generated answer is chosen.

Results The results for Mistral-7b-instruct are summarized in Figure 5, with additional results for
other LLMs and datasets as well as qualitative examples provided in Appendix E. We only present
results on error types that appear 30 times or more in our test dataset. Overall, using the probe
to select answers enhances the LLMs accuracy across all examined tasks. However, the extent of
improvement varies by error type. For instance, in the TriviaQA dataset, there is minimal gain in
the “mostly correct” category (B2). In contrast, substantial gains—ranging from 30 to 40 points in
some cases—are observed in the “mostly incorrect” (C2), “two competing answers” (D), and “many
answers” (E1) categories. Interestingly, and perhaps surprisingly, the probe is most effective in cases
where the LLM lacks any (external) preference for the correct answer during generation. The fact
that the probe can effectively identify the correct answer in these scenarios, points at a significant
disconnect between the LLM’s internal encoding and its external behavior. These results suggest
that even when the model encodes information of which answer is correct, it can still generate an
incorrect answer in practice.

While using the probe to select the answer proves effective, it is not proposed here as an error
mitigation strategy but rather as a diagnostic tool. However, these findings indicate that further
research in this area could leverage the existing knowledge within LLMs to significantly reduce
errors. We recommend exploring this direction in future investigations.

5We choose the best-performing probe for each task, which is trained on the last exact answer token.
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(a) TriviaQA

(b) Math

Figure 5: Different answer choice strategies, Mistral-7B-Instruct. A notable improvement in ac-
curacy by using the error-detection probe is observed for error types where the LLM shows no
preference for the correct answer across repeated generations.

7 DISCUSSION AND CONCLUSIONS

In this study, we analyzed LLM errors through their internal representations. Our approach depends
on access to internal representations, restricting its use to open-source models. We focus on QA
tasks with clear gold labels, which are key for benchmarking truthfulness detection and valued by the
community. To ensure robustness, we tested 10 datasets across 4 model architectures. Open-ended
tasks are left for future research, with our work laying the groundwork for broader applications. For
instance, we found that truthfulness-related information is localized in specific tokens within long-
responses, enabling practical improvements in error detection for production models. This insight
could extend to tasks like summarization, by probing the most meaningful entities in an answer.

Truthfulness features showed poor generalization across tasks and datasets, highlighting the need
for caution when applying trained error detectors in varied settings. Some unexplained patterns
suggest hidden links between unrelated tasks that warrant further research. Improving generalization
could involve exploring the effects of layer-token combinations and training on diverse datasets,
as demonstrated by Bürger et al. (2024). Deciphering task-specific truthfulness features and their
overlaps across tasks might also enhance classifier design. Still, task-specific probes could be highly
valuable in critical fields like medicine and law, where reliability matters. These probes can detect
errors, predict error types, and guide response selection from resampled outputs, offering significant
practical benefits. Guidelines for applying these probes are provided in Appendix F.

Finally, we identified a significant discrepancy between the model’s external behavior and internal
states, where it repeatedly outputs incorrect responses despite internally encoding the correct an-
swer. It is possible that mechanisms favoring likelihood override those promoting truthfulness, as
LLMs are trained to predicting likely tokens, which does not necessarily align with factual accu-
racy. Our findings imply that these models already encode valuable information that could possibly
be harnessed to reduce errors. Work by Chuang et al. (2024) shows promising results in this area,
while a subsequent work by Gekhman et al. (2025) focused exclusively on this “hidden knowledge”
phenomenon, formally defining it and studying its extent. In conclusion, our findings suggest that
LLMs’ internal representations provide useful insights into their errors, highlights the complex link
between the internal processes of models and their external outputs, and hopefully paves the way for
further improvements in error detection and mitigation.
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we provide detailed instructions and necessary code. The
source code, including scripts for generating model answers, probing, resampling, and error type
analysis, is available in the supplementary material, where we also provide command examples and
specific seeds used for experiment reproducibility. This repository includes documentation on how
to set up the environment, download and preprocess datasets, and execute the experiments outlined
in Sections 3–6 of the paper. Additionally, all datasets, models, and results generation steps are
described in the Appendix A.
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Philipp Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves,
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A IMPLEMENTATION DETAILS

A.1 TASK SPECIFIC ERROR DETECTION

In this work, we specifically address errors produced by modern large language models (LLMs).
Given the diverse range of tasks these models are applied to, our focus is on general error detection
across all categories, rather than isolating specific types. Prior to the emergence of LLMs, much
research targeted error detection for specific tasks, with common examples including grammatical
errors (Kasewa et al., 2018; Bell et al., 2019; Cheng & Duan, 2020; Wang & Tan, 2020; Flickinger
et al., 2016), spelling mistakes (Mishra & Kaur, 2013), machine translation inaccuracies (Lo, 2019;
Pu et al., 2021; Sellam et al., 2020; Gekhman et al., 2020; Rei et al., 2020; 2022a;b), speech recog-
nition faults (Caines et al., 2020; Rao et al., 2020; Li & Wang, 2024; Zhou et al., 2005; Allauzen,
2007; Gekhman et al., 2022; Errattahi et al., 2015; Pellegrini & Trancoso, 2009; Chen et al., 2013),
and factual consistency failures (Honovich et al., 2022; Laban et al., 2022; Honovich et al., 2021;
Gekhman et al., 2023; Scialom et al., 2021; Kryscinski et al., 2020).

A.2 PROBING: IMPLEMENTATION DETAILS

We examine the intermediate representations of the exact answer tokens generated by a large lan-
guage model (LLM) during the answer generation process. The intermediate representation selected
for this analysis is derived from the output of the final multi-layer perceptron (MLP). This choice is
based on preliminary experiments comparing the MLP output, the residual stream, and the attention
heads, which showed no significant differences. We leave the in-depth analysis for future work.

For the probing classifier, we employ a logistic regression model from the scikit-learn library (Pe-
dregosa et al., 2011). We used the default hyperparameters, which include a norm penalty of L2
and an LBFGS solver. We initially experimented with other hyper-parameters and did not find a
singnificant difference. For each random seed, the dataset was split to training and validation in a
80-20 ratio, and the test dataset was bootstrap sampled.

Obtaining correctness label for the probing dataset. An answer is generally considered cor-
rect if it includes the correct answer label and appears before any alternative incorrect labels. We
manually analyzed the results of this heuristic to confirm that it is accurate in almost all cases. How-
ever, one exception is the Natural Questions with Context (NQ WC) dataset, where we identified
false negatives and thus deployed a more precise validation using an instruct LLM, as demonstrated
below:

Evaluate the following answers to questions. For each question you would be given an LLM answer and
the correct answer. You would have to determine if the LLM answer is correct or not. If the LLM answer
is correct, write ’1’ and if it is not correct, write ’0’. For example:

Question: [Question 1]

Ground Truth: [Gold label 1]

LLM Answer: [LLM long answer 1]

Correctness: 0

Question: [Question 2]

Ground Truth: [Gold label 2]

LLM Answer: [LLM long answer 2]

Correctness: 1

Question: [Question]

Ground Truth: [Label]

LLM Answer: [LLM long answer]

Correctness:

19



Published as a conference paper at ICLR 2025

Table 3: Success rate of extracting exact answer from a long model answer. Each model is used to
extract answers from its own output.

Mistral-7b Mistral-Instruct-7b Llama3-8b Llama3-Instruct-8b

0.99 0.96 0.99 0.95

Detecting and using exact answer tokens. Exact answers are identified from a lengthy generated
answer using an external algorithm, which processes the question and the LLM’s response, A(qi, ŷi),
to extract the exact answer. After extraction, we identify the exact answer tokens via a simple search
process, focusing on four key tokens: the one before the first exact answer token, the first and last
exact answer tokens, and the one after the last.

For the implementation of A that detects the exact locations of answer tokens, we use a combination
of heuristic methods and an instruction-tuned LLM. Specifically, when the set of possible answers
is finite, we rely on heuristics. For more open-ended scenarios, such as factual questions, we auto-
matically locate the answer if it matches the gold label. Otherwise, we prompt an instruction-tuned
LLM, specifically Mistral-7b-Instruct (Jiang et al., 2023), to identify and extract the exact answer
substring using the following prompt:

Extract from the following long answer the short answer, only the relevant tokens. If the long answer
does not answer the question, output NO ANSWER.

Q: [Question 1]

A: [LLM long answer 1]

Exact answer: [Short exact answer 1]

Q: [Question 2]

A: [LLM long answer that does not answer the question]

Exact answer: NO ANSWER

Q: [Question]

A: [LLM long answer] Exact answer:

To extract a valid exact answer from a long response, we prompt the instruct LLM up to five times.
This process involves verifying that the exact answer is a substring of the long answer unless the
instruct LLM indicates that there is no answer. To avoid bias in our probing task, we only retain
questions for which a valid exact answer was successfully extracted. This ensures there is no unfair
correlation between invalid answers and incorrect answers in the experiments.

We note the following: (a) While it is possible to use an instruct LLM to extract every answer
regardless of its correctness, we chose the aforementioned strategy to improve the efficiency of our
experiments; (b) This is just one possible implementation. For each LLM, one could use the same
LLM to extract its own exact answer token, as demonstrated in a proof-of-concept over 1000 samples
of TriviaQA in Table 3. Alternatively, it may be more effective to train a smaller system specifically
designed for detecting exact answer tokens, which would be more suitable for real-world scenarios.
We choose to keep the extraction process as abstract as possible, as our primary focus is not on the
specific implementation, but on analyzing the potential gains from probing these locations.

Additionally, if the exact answer token is not among the first generated tokens, we examine the token
immediately preceding it (“before exact answer token”). If the exact answer token is not the last one,
we also examine the following token. When the exact answer spans multiple tokens, the first and
last exact answer tokens are probed separately.

A.3 DATASETS

We outline here all ten datasets that we investigate in our work. In our analysis, we aimed at covering
a wide range of tasks, skills required to solve the tasks, diversity of datasets and as a result also
different LLM limitations such as factual inaccuracies (often referred to as “hallucinations”), biases,
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arithmetic mistakes, and more. For each dataset, we explain how it covers something different from
all the previous datasets. For all datasets, we present the LLM with non or a short instruct, a context
(if exists for the task), and let it generate a free text. We follow this paradigm as it better mimics
real-world usage of LLMs by humans, as opposed to using few-shot to force a short answer that
is generated on the first token (Yuksekgonul et al., 2023; Chen et al., 2024; Simhi et al., 2024).
One exception to this is a the sentiment analysis (IMDB) for which we apply 1-shot for the LLM
to use the allowed labels, as it did not follow the instruction alone and we could not identify if
the answer is correct or not even with manual analysis. Additionally, we implemented a different
prompting strategy to the instruct and non-instruct LLMs. To see the exact formats we used to
prompt each dataset and LLM, refer to our code implementation at https://github.com/
technion-cs-nlp/LLMsKnow.

For each dataset we used a split of 10K training samples and 10K test samples, unless the dataset is
too small, in which case we mention the size.

• TriviaQA (Joshi et al., 2017): a collection of trivia question-answer pairs. The questions
are presented to the LLM without any context, allowing it to generate responses based
solely on its internal, parametric knowledge. The dataset includes various acceptable vari-
ations of the correct answer, which are used to automatically evaluate the accuracy of the
generated res.

• HotpotQA (Yang et al., 2018): a dataset designed for diverse multi-hop question answer-
ing. Each entry includes Wikipedia documents that help answering the questions. We use
two different settings: (1) without context, where questions are asked directly, which cov-
ers slightly different skills from TriviaQA as it requires reasoning in addition to factual
knowledge; and (2) with context (HotpotQA WC), where the additional context is pro-
vided, emphasizing the ability to adhere to and utilize contextual information to solve the
task.

• Movies: to further investigate generalization, we focused on a case of classic “halluci-
nations”, involving factual knowledge, within a non-diverse dataset. This approach al-
lowed us to test whether generalization to other types of errors is influenced by the type
of error (factual versus others) or by the dataset’s diversity. For this purpose, we cre-
ated the movies dataset consisting of prompts in the form: “Who acted as [figure name]
in the movie [movie name]?” The figures, movies, and correct answers were sourced
from “The Movies Dataset” in Kaggle: https://www.kaggle.com/datasets/
rounakbanik/the-movies-dataset, which is based on the MovieLens website.

• Winogrande (Sakaguchi et al., 2021): we use this dataset to explore errors in common-
sense reasoning. It consists of Winograd-style coreference challenges, where each example
presents a sentence containing two entities and a pronoun. The objective is to determine
which entity the pronoun refers to, relying on common-sense reasoning. For example, in
the sentence: “The trophy doesn’t fit into the suitcase because it’s too large,” the pronoun
“it” refers to the trophy, not the suitcase.

• Winobias (Zhao et al., 2018): this benchmark focuses on coreference resolution in the
context of gender bias, revealing a different type of limitation in LLMs. Each example
consists of two professions: one stereotypically male and one stereotypically female, along
with a gendered pronoun. The task requires the LLM to determine which profession the
pronoun refers to. The sentences are unambiguous, with one correct answer. In some cases,
the correct answer aligns with the stereotype, while in others, it is anti-stereotypical. For
example, in the sentence “The developer argued with the designer because she did not like
the design,” “she” refers to the developer, which is an anti-stereotypical case since “de-
veloper” is considered a stereotypically male profession. Research has shown that LLMs
often perform poorly on anti-stereotypical sentences (Zhao et al., 2018) and tend to base
their decisions on stereotypes rather than on common-sense reasoning or linguistic rules
(Kotek et al., 2023). Each split contains around 1500 samples.

• NLI (Natural Language Inference): NLI involves determining whether a given “hypoth-
esis” is true (entailment), false (contradiction), or undetermined (neutral) based on a pro-
vided “premise.” For this purpose, we use the MNLI dataset (Williams et al., 2018). NLI
tasks address a distinct aspect of common-sense reasoning and are generally considered
complex. This complexity allows us to investigate whether a model’s generalization ability
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is related to the difficulty of the task it was trained on, or to other factors, such as the limited
diversity of labels (NLI has only three valid labels) or the type of task.

• Math (Sun et al., 2024): this dataset includes both unanswerable and answerable math
problems. In our study, we focus exclusively on the answerable problems, as our aim is to
assess the correctness of the LLM’s outputs, which requires a known correct answer (gold
standard). This task introduces an additional, previously unexplored skill of arithmetic rea-
soning. The train-test split consists of approximately 2,000 and 650 samples, respectively.

• IMDB (Maas et al., 2011): contains movie reviews used for the task of sentiment classifi-
cation.

• Natural Questions With Context (Kwiatkowski et al., 2019): the Natural Questions (NQ)
dataset is designed to evaluate and train automatic question-answering systems. It consists
of real, anonymized queries submitted by users to Google, with answers extracted from
Wikipedia, as well as the relevant Wikipedia pages which can be given in context. We
included this dataset to introduce an additional challenge that requires adherence to context,
complementing the HotpotQA with context dataset.

A.4 BASELINES: IMPLEMENTATION DETAILS

Aggregated probabilities / logits. Inspired by prior work (Kadavath et al., 2022; Guerreiro et al.,
2023), we compute an aggregated score using the log-probabilities or raw probabilities of the gen-
erated text tokens y1, y2, . . . , yN produced by the generative large language model (LLM). For in-
stance, the following formulation is used to compute the Logits-mean baseline on the entire gener-
ated answer:

1

N

N∑
i=1

P(yi|Q, y1, ..., yi−1) (1)

We also explore aggregation strategies that focus solely on the exact answer tokens (PE-Exact).
Following Varshney et al. (2023), we also experiment with aggregating the minimum and maximum
values (PE-[Min—Max]-[Exact]), alongside the mean aggregation described in Equation 1.

P(True): We follow Kadavath et al. (2022) and prompt the LLM to judge whether its answer is
correct. Our prompt followed the following template, from Kadavath et al. (2022):

Question: [Question]

Proposed Answer: [LLM long answer]

Is the proposed answer:

(A) True

(B) False

The proposed answer is:

B FULL ERROR DETECTION RESULTS

Figure 6 presents the AUC values of a traind probe across layers and token for Mistral-7b-instruct,
showing a similar pattern across all datasets. We also observe similar patterns across other models.
See our repo https://github.com/technion-cs-nlp/LLMsKnowfor the figures.

Tables 4, 5, 6, and 7 present the full error detection results across all baselines and datasets, which
are consistent with the main paper results.
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(a) HotpotQA (b) HotpotQA with context (c) Movies

(d) Winogrande (e) NLI (f) IMDB

Figure 6: AUC values of a probe error detector across layers and tokens, Mistral-7b-instruct. The
detection performance spikes at the exact answer tokens.
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Table 4: Comparison of error detection performance (AUC) on Mistral-7B.

Mistral-7B
TriviaQA Winobias Math Movies IMDB

Logits-mean 0.67 ±0.004 0.49 ±0.010 0.41 ±0.015 0.67 ±0.007 0.88 ±0.064

Logits-mean-exact 0.67 ±0.004 0.50 ±0.010 0.56 ±0.026 0.68 ±0.008 0.57 ±0.080

Logits-min 0.80 ±0.003 0.45 ±0.014 0.48 ±0.021 0.73 ±0.006 0.78 ±0.056

Logits-min-exact 0.80 ±0.005 0.53 ±0.014 0.78 ±0.032 0.72 ±0.005 0.57 ±0.080

Logits-max 0.53 ±0.008 0.49 ±0.010 0.42 ±0.023 0.54 ±0.005 0.83 ±0.076

Logits-max-exact 0.54 ±0.009 0.50 ±0.010 0.40 ±0.024 0.58 ±0.007 0.57 ±0.080

Probas-mean 0.76 ±0.003 0.53 ±0.018 0.66 ±0.016 0.72 ±0.007 0.87 ±0.041

Probas-mean-exact 0.78 ±0.002 0.55 ±0.014 0.62 ±0.016 0.74 ±0.007 0.83 ±0.057

Probas-min 0.82 ±0.003 0.52 ±0.013 0.82 ±0.020 0.73 ±0.006 0.86 ±0.032

Probas-min-exact 0.85 ±0.003 0.58 ±0.011 0.84 ±0.015 0.74 ±0.006 0.83 ±0.057

Probas-max 0.53 ±0.008 0.50 ±0.016 0.43 ±0.025 0.55 ±0.008 0.80 ±0.074

Probas-max-exact 0.55 ±0.009 0.51 ±0.013 0.39 ±0.019 0.59 ±0.009 0.83 ±0.057

p(True) 0.57 ±0.007 0.53 ±0.019 0.56 ±0.027 0.51 ±0.003 0.65 ±0.004

p(True)-exact 0.56 ±0.006 0.55 ±0.026 0.57 ±0.036 0.52 ±0.003 0.65 ±0.003

Probe @ token
Last generated [-1] 0.83 ±0.002 0.65 ±0.008 0.82 ±0.023 0.79 ±0.002 0.85 ±0.007

Before last generated [-2] 0.82 ±0.003 0.84 ±0.012 0.83 ±0.019 0.78 ±0.003 0.95 ±0.004

End of question 0.74 ±0.005 0.78 ±0.012 0.83 ±0.016 0.77 ±0.002 0.81 ±0.009

Exact answer last 0.84 ±0.005 0.89 ±0.007 0.96 ±0.008 0.78 ±0.003 0.95 ±0.004

Exact answer last+1 0.84 ±0.004 0.84 ±0.012 0.95 ±0.010 0.80 ±0.002 0.85 ±0.007

HotpotQA HotpotQA-WC Winogrande NLI NQ-WC

Logits-mean 0.63 ±0.005 0.52 ±0.009 0.49 ±0.004 0.51 ±0.004 0.69 ±0.006

Logits-mean-exact 0.57 ±0.008 0.52 ±0.007 0.50 ±0.003 0.93 ±0.004 0.72 ±0.005

Logits-min 0.72 ±0.008 0.59 ±0.006 0.50 ±0.007 0.53 ±0.005 0.65 ±0.009

Logits-min-exact 0.72 ±0.007 0.65 ±0.004 0.51 ±0.007 0.49 ±0.006 0.70 ±0.005

Logits-max 0.54 ±0.007 0.49 ±0.010 0.48 ±0.005 0.48 ±0.005 0.59 ±0.012

Logits-max-exact 0.48 ±0.010 0.44 ±0.007 0.50 ±0.003 0.48 ±0.005 0.58 ±0.009

Probas-mean 0.65 ±0.004 0.55 ±0.006 0.51 ±0.007 0.49 ±0.003 0.63 ±0.008

Probas-mean-exact 0.62 ±0.006 0.56 ±0.007 0.51 ±0.005 0.02 ±0.001 0.66 ±0.007

Probas-min 0.73 ±0.005 0.58 ±0.007 0.52 ±0.009 0.53 ±0.004 0.63 ±0.011

Probas-min-exact 0.78 ±0.005 0.66 ±0.004 0.52 ±0.008 0.49 ±0.005 0.69 ±0.006

Probas-max 0.54 ±0.008 0.49 ±0.007 0.50 ±0.005 0.47 ±0.004 0.52 ±0.004

Probas-max-exact 0.48 ±0.010 0.44 ±0.005 0.50 ±0.004 0.48 ±0.003 0.53 ±0.012

p(True) 0.55 ±0.007 0.54 ±0.006 0.51 ±0.005 0.51 ±0.003 0.52 ±0.008

p(True)-exact 0.61 ±0.005 0.54 ±0.006 0.61 ±0.006 0.51 ±0.006 0.53 ±0.014

Probe @ token
Last generated [-1] 0.78 ±0.006 0.67 ±0.004 0.51 ±0.007 0.77 ±0.004 0.78 ±0.003

Before last generated [-2] 0.79 ±0.007 0.69 ±0.007 0.66 ±0.004 0.81 ±0.002 0.75 ±0.006

End of question 0.72 ±0.007 0.56 ±0.003 0.51 ±0.007 0.88 ±0.004 0.70 ±0.005

Exact answer last 0.80 ±0.008 0.74 ±0.007 0.69 ±0.006 0.84 ±0.004 0.81 ±0.009

Exact answer last+1 0.81 ±0.008 0.72 ±0.005 0.59 ±0.005 0.75 ±0.006 0.84 ±0.007
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Table 5: Comparison of error detection performance (AUC) on Mistral-7B-Instruct.

Mistral-7B-Instruct
TriviaQA Winobias Math Movies IMDB

Logits-mean 0.60 ±0.009 0.56 ±0.017 0.55 ±0.029 0.63 ±0.005 0.57 ±0.006

Logits-mean-exact 0.68 ±0.007 0.54 ±0.012 0.51 ±0.005 0.70 ±0.004 0.87 ±0.007

Logits-min 0.63 ±0.008 0.59 ±0.012 0.51 ±0.017 0.66 ±0.008 0.52 ±0.007

Logits-min-exact 0.75 ±0.006 0.53 ±0.013 0.71 ±0.009 0.74 ±0.005 0.87 ±0.007

Logits-max 0.54 ±0.005 0.53 ±0.012 0.54 ±0.039 0.54 ±0.004 0.47 ±0.004

Logits-max-exact 0.55 ±0.004 0.54 ±0.011 0.32 ±0.015 0.61 ±0.006 0.87 ±0.007

Probas-mean 0.60 ±0.007 0.58 ±0.018 0.56 ±0.028 0.61 ±0.002 0.54 ±0.008

Probas-mean-exact 0.71 ±0.003 0.57 ±0.015 0.71 ±0.014 0.74 ±0.006 0.84 ±0.007

Probas-min 0.59 ±0.008 0.58 ±0.014 0.50 ±0.025 0.60 ±0.008 0.51 ±0.010

Probas-min-exact 0.74 ±0.004 0.57 ±0.016 0.75 ±0.011 0.73 ±0.006 0.84 ±0.007

Probas-max 0.50 ±0.006 0.41 ±0.010 0.53 ±0.009 0.51 ±0.005 0.48 ±0.004

Probas-max-exact 0.51 ±0.007 0.54 ±0.010 0.45 ±0.015 0.60 ±0.003 0.84 ±0.007

p(True) 0.68 ±0.005 0.45 ±0.021 0.48 ±0.026 0.62 ±0.005 0.62 ±0.009

p(True)-exact 0.74 ±0.003 0.40 ±0.021 0.60 ±0.025 0.69 ±0.008 0.60 ±0.009

Probe @ token
Last generated [-1] 0.71 ±0.006 0.82 ±0.004 0.74 ±0.008 0.72 ±0.005 0.92 ±0.010

Before last generated [-2] 0.73 ±0.004 0.85 ±0.004 0.74 ±0.007 0.72 ±0.006 0.94 ±0.006

End of question 0.76 ±0.008 0.82 ±0.011 0.72 ±0.007 0.74 ±0.003 0.96 ±0.006

Exact answer last 0.85 ±0.004 0.92 ±0.005 0.92 ±0.008 0.81 ±0.003 0.97 ±0.005

Exact answer last+1 0.86 ±0.006 0.88 ±0.006 0.90 ±0.010 0.82 ±0.003 0.96 ±0.006

HotpotQA HotpotQA-WC Winogrande NLI NQ-WC

Logits-mean 0.61 ±0.002 0.55 ±0.009 0.59 ±0.004 0.64 ±0.006 0.71 ±0.008

Logits-mean-exact 0.66 ±0.009 0.55 ±0.004 0.49 ±0.004 0.57 ±0.004 0.69 ±0.009

Logits-min 0.61 ±0.003 0.53 ±0.013 0.61 ±0.003 0.62 ±0.002 0.67 ±0.008

Logits-min-exact 0.77 ±0.004 0.67 ±0.013 0.48 ±0.004 0.54 ±0.005 0.69 ±0.006

Logits-max 0.53 ±0.008 0.51 ±0.011 0.52 ±0.006 0.59 ±0.008 0.63 ±0.011

Logits-max-exact 0.51 ±0.011 0.41 ±0.010 0.49 ±0.007 0.64 ±0.003 0.63 ±0.013

Probas-mean 0.63 ±0.003 0.56 ±0.010 0.58 ±0.005 0.62 ±0.005 0.68 ±0.010

Probas-mean-exact 0.72 ±0.006 0.66 ±0.010 0.46 ±0.004 0.57 ±0.003 0.65 ±0.008

Probas-min 0.58 ±0.003 0.52 ±0.008 0.59 ±0.002 0.58 ±0.008 0.65 ±0.014

Probas-min-exact 0.76 ±0.004 0.68 ±0.010 0.46 ±0.005 0.57 ±0.003 0.66 ±0.008

Probas-max 0.50 ±0.005 0.53 ±0.003 0.48 ±0.007 0.52 ±0.007 0.51 ±0.005

Probas-max-exact 0.46 ±0.010 0.46 ±0.010 0.48 ±0.004 0.53 ±0.004 0.52 ±0.018

p(True) 0.54 ±0.006 0.54 ±0.004 0.53 ±0.003 0.58 ±0.003 0.57 ±0.006

p(True)-exact 0.60 ±0.008 0.48 ±0.005 0.57 ±0.011 0.65 ±0.004 0.57 ±0.009

Probe @ token
Last generated [-1] 0.72 ±0.005 0.64 ±0.005 0.74 ±0.005 0.85 ±0.004 0.82 ±0.006

Before last generated [-2] 0.73 ±0.006 0.64 ±0.004 0.76 ±0.004 0.87 ±0.002 0.84 ±0.009

End of question 0.80 ±0.003 0.63 ±0.003 0.71 ±0.007 0.79 ±0.004 0.85 ±0.010

Exact answer last 0.85 ±0.003 0.75 ±0.006 0.84 ±0.005 0.93 ±0.003 0.86 ±0.003

Exact answer last+1 0.85 ±0.002 0.76 ±0.004 0.80 ±0.004 0.92 ±0.004 0.87 ±0.006
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Table 6: Comparison of error detection performance (AUC) on Llama-8b.

Llama-8b
TriviaQA Winobias Math Movies IMDB

Logits-mean 0.58 ±0.006 0.44 ±0.015 0.43 ±0.026 0.64 ±0.008 0.77 ±0.007

Logits-mean-exact 0.63 ±0.007 0.50 ±0.015 0.50 ±0.028 0.64 ±0.008 0.77 ±0.007

Logits-min 0.75 ±0.007 0.50 ±0.022 0.45 ±0.042 0.73 ±0.005 0.73 ±0.007

Logits-min-exact 0.76 ±0.003 0.53 ±0.009 0.75 ±0.022 0.73 ±0.005 0.77 ±0.007

Logits-max 0.48 ±0.006 0.48 ±0.009 0.42 ±0.027 0.53 ±0.005 0.72 ±0.007

Logits-max-exact 0.52 ±0.007 0.49 ±0.014 0.35 ±0.026 0.53 ±0.005 0.77 ±0.007

Probas-mean 0.64 ±0.006 0.41 ±0.008 0.61 ±0.029 0.71 ±0.007 0.70 ±0.008

Probas-mean-exact 0.72 ±0.005 0.50 ±0.018 0.54 ±0.026 0.72 ±0.006 0.88 ±0.003

Probas-min 0.79 ±0.008 0.43 ±0.004 0.75 ±0.044 0.74 ±0.005 0.68 ±0.005

Probas-min-exact 0.82 ±0.003 0.53 ±0.014 0.78 ±0.022 0.74 ±0.005 0.88 ±0.003

Probas-max 0.49 ±0.006 0.50 ±0.009 0.46 ±0.032 0.53 ±0.007 0.60 ±0.009

Probas-max-exact 0.53 ±0.008 0.50 ±0.018 0.36 ±0.032 0.54 ±0.007 0.88 ±0.003

p(True) 0.62 ±0.005 0.48 ±0.011 0.53 ±0.027 0.61 ±0.005 0.51 ±0.010

p(True)-exact 0.67 ±0.002 0.53 ±0.017 0.63 ±0.028 0.58 ±0.005 0.52 ±0.008

Probe @ token
Last generated [-1] 0.77 ±0.005 0.59 ±0.024 0.83 ±0.013 0.82 ±0.005 0.94 ±0.002

Before last generated [-2] 0.76 ±0.012 0.58 ±0.021 0.82 ±0.032 0.79 ±0.004 0.96 ±0.002

End of question 0.73 ±0.005 0.77 ±0.012 0.80 ±0.027 0.78 ±0.005 0.68 ±0.009

Exact answer last 0.82 ±0.006 0.91 ±0.007 0.96 ±0.010 0.80 ±0.005 0.97 ±0.001

Exact answer last+1 0.82 ±0.006 0.86 ±0.008 0.95 ±0.007 0.82 ±0.006 0.95 ±0.003

HotpotQA HotpotQA-WC Winogrande NLI NQ-WC

Logits-mean 0.65 ±0.004 0.62 ±0.006 0.48 ±0.003 0.47 ±0.002 0.53 ±0.010

Logits-mean-exact 0.55 ±0.003 0.54 ±0.006 0.49 ±0.004 0.48 ±0.002 0.58 ±0.009

Logits-min 0.57 ±0.004 0.49 ±0.003 0.48 ±0.003 0.48 ±0.007 0.58 ±0.009

Logits-min-exact 0.69 ±0.002 0.68 ±0.006 0.49 ±0.003 0.48 ±0.007 0.61 ±0.010

Logits-max 0.61 ±0.005 0.60 ±0.004 0.48 ±0.003 0.52 ±0.003 0.51 ±0.008

Logits-max-exact 0.47 ±0.003 0.46 ±0.005 0.49 ±0.004 0.51 ±0.002 0.54 ±0.005

Probas-mean 0.67 ±0.002 0.62 ±0.006 0.49 ±0.002 0.48 ±0.004 0.57 ±0.003

Probas-mean-exact 0.62 ±0.005 0.56 ±0.005 0.51 ±0.002 0.46 ±0.006 0.64 ±0.007

Probas-min 0.62 ±0.006 0.51 ±0.002 0.49 ±0.003 0.50 ±0.010 0.62 ±0.005

Probas-min-exact 0.76 ±0.005 0.67 ±0.004 0.51 ±0.002 0.50 ±0.010 0.69 ±0.008

Probas-max 0.61 ±0.004 0.58 ±0.004 0.48 ±0.002 0.48 ±0.003 0.51 ±0.012

Probas-max-exact 0.49 ±0.003 0.44 ±0.004 0.51 ±0.003 0.47 ±0.002 0.56 ±0.005

p(True) 0.52 ±0.007 0.45 ±0.005 0.54 ±0.004 0.54 ±0.007 0.56 ±0.006

p(True)-exact 0.58 ±0.005 0.50 ±0.007 0.64 ±0.004 0.62 ±0.005 0.61 ±0.002

Probe @ token
Last generated [-1] 0.76 ±0.007 0.57 ±0.006 0.59 ±0.006 0.89 ±0.002 0.66 ±0.010

Before last generated [-2] 0.74 ±0.007 0.58 ±0.005 0.59 ±0.005 0.94 ±0.002 0.63 ±0.008

End of question 0.71 ±0.006 0.53 ±0.004 0.48 ±0.003 0.91 ±0.001 0.66 ±0.004

Exact answer last 0.81 ±0.006 0.77 ±0.004 0.65 ±0.004 0.94 ±0.002 0.75 ±0.008

Exact answer last+1 0.82 ±0.004 0.79 ±0.001 0.57 ±0.004 0.90 ±0.002 0.75 ±0.007
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Table 7: Comparison of error detection performance (AUC) on Llama-8b-Instruct.

Llama-8b-Instruct
TriviaQA Winobias Math Movies IMDB

Logits-mean 0.66 ±0.005 0.60 ±0.026 0.75 ±0.018 0.75 ±0.005 0.59 ±0.017

Logits-mean-exact 0.71 ±0.006 0.55 ±0.019 0.80 ±0.021 0.72 ±0.004 0.88 ±0.012

Logits-min 0.74 ±0.007 0.61 ±0.024 0.75 ±0.016 0.71 ±0.005 0.55 ±0.016

Logits-min-exact 0.79 ±0.006 0.61 ±0.019 0.89 ±0.018 0.77 ±0.006 0.88 ±0.012

Logits-max 0.54 ±0.007 0.55 ±0.013 0.73 ±0.027 0.67 ±0.003 0.51 ±0.009

Logits-max-exact 0.58 ±0.005 0.54 ±0.019 0.64 ±0.014 0.61 ±0.003 0.88 ±0.012

Probas-mean 0.67 ±0.006 0.63 ±0.024 0.66 ±0.033 0.73 ±0.006 0.73 ±0.015

Probas-mean-exact 0.75 ±0.009 0.61 ±0.014 0.83 ±0.022 0.74 ±0.005 0.74 ±0.021

Probas-min 0.67 ±0.009 0.65 ±0.019 0.64 ±0.036 0.65 ±0.004 0.57 ±0.016

Probas-min-exact 0.79 ±0.008 0.62 ±0.014 0.86 ±0.024 0.74 ±0.005 0.74 ±0.021

Probas-max 0.54 ±0.003 0.49 ±0.020 0.57 ±0.022 0.64 ±0.006 0.49 ±0.008

Probas-max-exact 0.56 ±0.007 0.55 ±0.016 0.57 ±0.018 0.61 ±0.003 0.74 ±0.021

p(True) 0.73 ±0.008 0.59 ±0.020 0.62 ±0.017 0.66 ±0.004 0.60 ±0.006

p(True)-exact 0.73 ±0.005 0.63 ±0.014 0.59 ±0.018 0.63 ±0.006 0.76 ±0.004

Probe @ token
Last generated [-1] 0.81 ±0.005 0.86 ±0.007 0.82 ±0.016 0.78 ±0.004 0.81 ±0.014

Before last generated [-2] 0.75 ±0.005 0.88 ±0.005 0.79 ±0.020 0.82 ±0.005 0.83 ±0.006

End of question 0.77 ±0.007 0.80 ±0.018 0.72 ±0.023 0.76 ±0.005 0.87 ±0.006

Exact answer last 0.83 ±0.002 0.93 ±0.004 0.95 ±0.027 0.85 ±0.005 0.96 ±0.003

Exact answer last+1 0.83 ±0.006 0.90 ±0.005 0.94 ±0.023 0.86 ±0.004 0.95 ±0.004

HotpotQA HotpotQA-WC Winogrande NLI NQ-WC

Logits-mean 0.65 ±0.002 0.56 ±0.004 0.58 ±0.007 0.59 ±0.009 0.65 ±0.006

Logits-mean-exact 0.66 ±0.008 0.57 ±0.005 0.48 ±0.003 0.49 ±0.010 0.67 ±0.005

Logits-min 0.67 ±0.008 0.55 ±0.007 0.60 ±0.008 0.53 ±0.009 0.68 ±0.004

Logits-min-exact 0.76 ±0.010 0.65 ±0.010 0.48 ±0.004 0.50 ±0.009 0.68 ±0.004

Logits-max 0.59 ±0.005 0.56 ±0.005 0.46 ±0.004 0.55 ±0.013 0.56 ±0.006

Logits-max-exact 0.52 ±0.006 0.48 ±0.002 0.48 ±0.003 0.49 ±0.009 0.63 ±0.008

Probas-mean 0.61 ±0.002 0.56 ±0.010 0.57 ±0.007 0.58 ±0.007 0.65 ±0.007

Probas-mean-exact 0.68 ±0.008 0.65 ±0.006 0.51 ±0.006 0.57 ±0.009 0.67 ±0.003

Probas-min 0.60 ±0.004 0.51 ±0.007 0.59 ±0.007 0.55 ±0.005 0.64 ±0.008

Probas-min-exact 0.74 ±0.007 0.67 ±0.007 0.51 ±0.006 0.59 ±0.008 0.66 ±0.004

Probas-max 0.56 ±0.005 0.53 ±0.005 0.46 ±0.003 0.51 ±0.004 0.55 ±0.004

Probas-max-exact 0.49 ±0.007 0.47 ±0.002 0.51 ±0.005 0.50 ±0.009 0.62 ±0.006

p(True) 0.55 ±0.005 0.55 ±0.008 0.47 ±0.002 0.54 ±0.006 0.71 ±0.003

p(True)-exact 0.55 ±0.004 0.50 ±0.005 0.50 ±0.008 0.50 ±0.003 0.67 ±0.007

Probe @ token
Last generated [-1] 0.77 ±0.005 0.68 ±0.006 0.69 ±0.006 0.78 ±0.005 0.77 ±0.009

Before last generated [-2] 0.76 ±0.002 0.69 ±0.005 0.67 ±0.008 0.79 ±0.004 0.75 ±0.007

End of question 0.78 ±0.004 0.60 ±0.003 0.65 ±0.004 0.74 ±0.002 0.75 ±0.011

Exact answer last 0.83 ±0.005 0.76 ±0.003 0.78 ±0.007 0.91 ±0.005 0.78 ±0.006

Exact answer last+1 0.83 ±0.002 0.76 ±0.006 0.70 ±0.006 0.90 ±0.004 0.78 ±0.007
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(a) Raw AUC values. Values above 0.5 indicate some
generalization.

(b) Performance (AUC) difference of the probe and
the logit-based method. Values above 0 indicate gen-
eralization beyond the logit-based method.

Figure 7: Generalization between datasets, Mistral-7b.

(a) Raw AUC values. Values above 0.5 indicate some
generalization.

(b) Performance (AUC) difference of the probe and
the logit-based method. Values above 0 indicate gen-
eralization beyond the logit-based method.

Figure 8: Generalization between datasets, Llama-3-8b.

C FULL GENERALIZATION RESULTS

Figures 7, 8 and 9 present the generalization results for the remaining models. While these results
exhibit similar high-level patterns to those found in the main paper on Mistral-7b-instruct, notable
differences suggest that these models may possess different mechanisms for encoding truthfulness.

D TAXONOMY OF ERRORS

Figure 10 presents, for each amount of resamples, the amount percentage of answers for which at
least one generated answer was correct. The experiment was done on Mistral-7b-instruct with the
TriviaQA dataset. For many answers that the greedy decoding fails to correctly provide an answer,
the LLM is still able to generate the correct answer in at least one resample. The plot plateues around
30 resamples.
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(a) Raw AUC values. Values above 0.5 indicate some
generalization.

(b) Performance (AUC) difference of the probe and
the logit-based method. Values above 0 indicate gen-
eralization beyond the logit-based method.

Figure 9: Generalization between datasets, Llama-3-8b-instruct.

Figure 10: The percentage of answers for which at least one generated answer was correct. The first
step is greedy decoding.
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Table 8: AUC scores for error type classification (Winobias).

Error type Mistral-7b Mistral-Instr-7b Llama3-8b Llama3-Instr-8b

(A) Refuses to answer - - - -
(B) Consistently correct 0.83±0.004 0.88±0.002 0.84±0.003 0.89±0.003

(C) Consistently incorrect 0.83±0.004 0.88±0.002 0.79±0.004 0.90±0.003

(D) Two competing 0.68±0.004 0.58±0.015 0.74±0.005 0.88±0.004

(E) Many answers - - - -

Table 9: AUC scores for error type classification (Math). Error types are predictable from the inner
model representations, indicating the encoding of fine-grained information on errors.

Error type Mistral-7b Mistral-Instr-7b Llama3-8b Llama3-Instr-8b

(A) Refuses to answer - - - -
(B) Consistently correct 0.85±0.017 0.84±0.007 0.83±0.020 0.87±0.006

(C) Consistently incorrect 0.85±0.026 0.85±0.003 0.69±0.032 0.91±0.007

(D) Two competing - 0.76±0.020 0.57±0.001 0.79±0.006

(E) Many answers 0.74±0.010 0.79±0.015 0.69±0.041 0.90±0.008

D.1 ERROR TAXONOMY DESIGN CHOICES

The error taxonomy proposed in this paper is intentionally non-orthogonal, as some errors may
simultaneously belong to multiple categories. For instance, an error might fall under both “con-
sistently incorrect” (e.g., the same incorrect answer appears at least 15 times) and “many different
answers” (e.g., the remaining answers show over 10 distinct variants).

Our taxonomy is designed to capture such nuanced cases, as restricting classification to a single cate-
gory would hinder the generalizability of insights. Instead, we aim to learn general properties across
different error types, providing LLM providers with actionable insights into questions exhibiting
overlapping error patterns.

To support this non-orthogonal framework, our probes function as one-to-many classifiers, enabling
precise error analysis and tailored solutions.

D.2 RESULTS ON ADDITIONAL DATASETS

Table 8 presents the results of error type classification on the Winobias dataset and Table 9 on the
Math dataset.

D.3 QUALITATIVE EXAMPLES

Tables 10 and 11 present qualitative examples of the error types in the TriviaQA and Math datasets.

E DETECTING THE CORRECT ANSWER FULL RESULTS

In Table 12 we present some qualitative samples from Mistral-7b-instruct, for the phenomenon we
observe at error type (C2) Consistently incorrect but generates the correct answer at least one time.
The samples in the table represent cases where the probe chose the correct answer. Table 13 com-
pares different decoding mechanisms, including the choice via probe, on non-instruct models, and
Table 14 compares on the instruct models. For all datasets and models, we observe similar conclu-
sions to those in the main paper: significant improvement is observed for error types where the LLM
shows no preference to the correct answer.
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Table 10: Examples of error types in TriviaQA, Mistral-7B-Instruct. Correct answer is in bold.

Type of error Question Answers

Consistently
correct

What clothing-part metaphorically
classifies workers/jobs according
to white or blue?

“collar”: 30

Consistently
incorrect

Which town in southeast Wales
became a UNESCO World Heritage
Site in 2000?

“Blaenavon”: 1,
“Caerleon”: 29

Many different
answers

Published in 2013 who wrote
the novel ’The Kill List’?

“Frederick Forsyth”: 1,
“Jerry Patterson”: 1,
“Edward Lee”: 1,
“Barry Lancet”: 4
“Jeremy Holiday”: 1,
“Barry Lincoff”: 1,
“Jim Marrs”: 1,
“John Marrs”: 1,
“Anthony Lacy”: 1,
“Daniel Kraus”: 1,
“Ron Bass”: 1,
“David Martiniello”: 2,
“Eric Lustbader”: 1,
“Barbie Latza Nadeau”: 1,
“James Swallow”: 1,
“Mark Sullivan”: 1,
“Alex Binotto”: 1,
“David Baldacci”: 1,
“Bill Cosores”: 1,
“Frederic J. Brown”: 1,
“Ron Capps and Tate Foley”: 1,
“Barbie Wilde”: 1,
“NO ANSWER”: 3

Two competing answers

What is the only letter of the
alphabet which does not appear
in any of the names of the 50
American states?

“The letter q”: 15,
“The letter X”: 15

F PRACTICAL GUIDANCE ON INTEGRATING INSIGHTS FROM THIS PAPER
INTO MODEL DEVELOPMENT WORKFLOWS

The findings of this study reveal critical insights into the internal mechanisms of Large Language
Models (LLMs) and their implications for truthfulness and error handling. To effectively incorporate
these insights into model development, consider the following strategies:

Error Detection. Focus on representations of exact answer tokens to train the error detection
probe. These tokens encode significant truthfulness signals and improve the reliability of error
detection mechanisms. The trained probe should be integrated as part of the pipeline for specific
task, e.g., math calculations. The probe provides a confidence score which can be used to warn the
user for unreliable outputs, or to perform an intervention to fix the answer.

Error-Specific Interventions. The taxonomy of errors outlined in this study can be utilized to
classify and analyze the types of errors that an LLMs may produce. Identifying these error types is
useful for customizing strategies for error mitigation. The probes for detecting error types can be de-
ployed as part of the LLM pipeline and create interventions based on their predictions. For example,
Retrieval Augmented Generation (RAG) (Lewis et al., 2020) can help for “consistently incorrect”
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Table 11: Examples of error types in Math, Mistral-7B-Instruct. Correct answer is in bold.

Type of error Question Answers

Consistently
correct

If John travels 15 miles on a bike
ride, and Jill travels 5 miles less,
how many miles does Jim travel
if he travels only 20% as far as Jill?

“2”: 30

Consistently
incorrect

Joy has 30 pencils, and Colleen
has 50 pencils. If they bought the
pencils at $4 each at the store,
how much more money did
Colleen pay than Joy for her pencils?

“80$”: 1,
“16$”: 29 (correct)

Many different
answers

If the first skyscraper was built 100
years ago, how many years in the
future will it be 5 years before
its 200th anniversary of being built?

“95”: 14,
“91”: 1,
“87”: 1,
“15”: 2,
“96”: 1,
“Six”: 1,
“202 ”: 1,
“2035”: 1,
“195”: 1,
“49”: 1,
“101”: 1,
“199”: 1,
“3 years before the
200th anniversary”: 1,
“203 years after it was
built”: 1,
“196”: 1,
“2043”: 1

Two competing answers

David did 27 more push-ups but 7
less crunches than Zachary in gym
class today. If Zachary did 5 push-
ups and 17 crunches.How many more
crunches than push-ups did Zachary do?

“12”:5, “1”: 5 x

errors, as well as resampling and choosing the answer ranked highest by the error detection probe,
or weight-update, if possible, as a more consistent solution. For “consistently correct” error types,
an intervention on the LLM’s internal representations can increase the confidence in generating a
correct answer (Simhi et al., 2024).

Cross-Task Generalization. Universal generalization of probing classifiers across unrelated tasks
should be approached with caution. The results in this work show that probes are mainly useful for
task-specific error detection.
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Table 12: Examples of questions where Mistral-7b-Instruct consistently provided incorrect answers
but occasionally generated the correct one. In these instances, the probe successfully identified the
right answer. For each question, the model was sampled 30 times.

Question Wrong
Answer Count Correct

Answer Count

Which town in southeast
Wales became a UNESCO
World Heritage Site in 2000?

Caerleon 29 Blaenavon 1

From her first US film musical
”Down Argentina Way” (1940),
who became famous for
extravagant hats, jewellery and
dresses?

Betty
Grable 27 Carmen

Miranda 1

Men Against the Sea and
Pitcairn’s Island were two
sequels to what famous novel?

Robinson
Crusoe 18 Mutiny on

the Bounty 2

Which is the only property on a
traditional UK Monopoly board
which s south of the River
Thames?

Coventry
Street 17 Old Kent

Road 3

Which French Canadian became
Prime Minister of
Canada in 1968?

Jean
Chrétien 21

Pierre
Elliott
Trudeau

4

Table 13: Various answer choice strategies, non-instruct models.

Mistral-7b
TriviaQA Math Winobias

Error type Greedy Random Majority Probing Greedy Random Majority Probing Greedy Random Majority Probing

All 0.63 ±0.003 0.54 ±0.004 0.65 ±0.002 0.62 ±0.003 0.25 ±0.018 0.36 ±0.022 0.49 ±0.019 0.60 ±0.017 0.69 ±0.016 0.58 ±0.009 0.62 ±0.009 0.83 ±0.006

(A) Refuses to answer 0.08 ±0.015 0.04 ±0.009 0.00 ±0.000 0.13 ±0.007 0.01 ±0.009 0.04 ±0.019 0.00 ±0.000 0.22 ±0.033 - - - -
(B1) All 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 - - - - - - - -
(B2) Most 0.98 ±0.001 0.84 ±0.009 1.00 ±0.000 0.91 ±0.002 0.96 ±0.024 0.84 ±0.031 1.00 ±0.000 0.86 ±0.041 0.96 ±0.004 0.73 ±0.009 0.95 ±0.003 0.91 ±0.009

(C) Consistently incorrect
(C1) All 0.00 ±0.003 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 - - - - - - - -
(C2) Most 0.03 ±0.014 0.20 ±0.008 0.00 ±0.000 0.27 ±0.036 - - - - 0.19 ±0.010 0.30 ±0.026 0.00 ±0.000 0.70 ±0.007

(D) Two competing 0.48 ±0.006 0.36 ±0.008 0.52 ±0.015 0.54 ±0.016 - - - - 0.73 ±0.018 0.54 ±0.022 0.47 ±0.030 0.85 ±0.019

(E) Many answers
(E1) Non correct 0.01 ±0.004 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.01 ±0.010 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 - - - -
(E2) Correct appears 0.38 ±0.009 0.21 ±0.006 0.42 ±0.015 0.38 ±0.009 0.09 ±0.010 0.17 ±0.034 0.36 ±0.020 0.62 ±0.035 - - - -

Llama-8b
TriviaQA Math Winobias

Error type Greedy Sampling Majority Probing Greedy Sampling Majority Probing Greedy Sampling Majority Probing

All 0.66 ±0.002 0.58 ±0.003 0.68 ±0.003 0.68 ±0.002 0.30 ±0.023 0.47 ±0.022 0.62 ±0.014 0.70 ±0.021 0.73 ±0.011 0.61 ±0.005 0.66 ±0.016 0.84 ±0.006

(A) Refuses to answer 0.08 ±0.005 0.07 ±0.011 0.00 ±0.000 0.16 ±0.011 0.00 ±0.007 0.04 ±0.015 0.00 ±0.000 0.25 ±0.025 - - - -
(B) Consistently correct

(B1) All 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 - - - - - - - -
(B2) Most 0.98 ±0.001 0.87 ±0.002 1.00 ±0.000 0.95 ±0.002 0.77 ±0.024 0.88 ±0.025 1.00 ±0.000 0.97 ±0.014 0.98 ±0.005 0.75 ±0.004 1.00 ±0.000 0.94 ±0.003

(C) Consistently incorrect
(C1) All 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 - - - - - - - -
(C2) Most 0.06 ±0.013 0.18 ±0.009 0.00 ±0.000 0.35 ±0.043 - - - - 0.25 ±0.026 0.29 ±0.023 0.00 ±0.000 0.65 ±0.022

(D) Two competing 0.44 ±0.029 0.42 ±0.035 0.53 ±0.020 0.66 ±0.030 - - - - 0.73 ±0.025 0.47 ±0.019 0.41 ±0.037 0.86 ±0.014

(E) Many answers
(E1) Non correct 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 - - - -
(E2) Correct appears 0.46 ±0.009 0.34 ±0.009 0.53 ±0.007 0.54 ±0.005 0.14 ±0.015 0.17 ±0.025 0.44 ±0.047 0.65 ±0.031 - - - -
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Table 14: Various answer choice strategies, instruct models.

Mistral-7b-Instruct
TriviaQA Math Winobias

Error type Greedy Random Majority Probing Greedy Random Majority Probing Greedy Random Majority Probing

All 0.63 ±0.003 0.64 ±0.002 0.67 ±0.004 0.71 ±0.003 0.55 ±0.021 0.52 ±0.019 0.57 ±0.025 0.70 ±0.014 0.77 ±0.012 0.77 ±0.008 0.77 ±0.010 0.79 ±0.008

(A) Refuses to answer 0.06 ±0.005 0.06 ±0.011 0.00 ±0.000 0.28 ±0.009 - - - - - - - -
(B1) All 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000

(B2) Most 0.88 ±0.007 0.83 ±0.009 0.99 ±0.002 0.89 ±0.010 0.87 ±0.013 0.84 ±0.024 1.00 ±0.000 0.96 ±0.007 0.91 ±0.031 0.87 ±0.029 0.96 ±0.017 0.89 ±0.032

(C) Consistently incorrect
(C1) All 0.00 ±0.003 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.05 ±0.020 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000

(C2) Most 0.11 ±0.009 0.15 ±0.012 0.00 ±0.000 0.53 ±0.005 0.10 ±0.040 0.20 ±0.050 0.00 ±0.000 0.82 ±0.037 0.18 ±0.057 0.20 ±0.039 0.00 ±0.000 0.54 ±0.067

(D) Two competing 0.32 ±0.010 0.45 ±0.023 0.50 ±0.024 0.78 ±0.017 - - - - - - - -
(E) Many answers

(E1) Non correct 0.01 ±0.003 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 - - - - - - - -
(E2) Correct appears 0.23 ±0.020 0.19 ±0.022 0.38 ±0.009 0.56 ±0.025 - - - - - - - -

Llama-8b-Instruct
TriviaQA Math Winobias

Error type Greedy Sampling Majority Probing Greedy Sampling Majority Probing Greedy Sampling Majority Probing

All 0.69 ±0.003 0.67 ±0.001 0.71 ±0.002 0.73 ±0.004 0.89 ±0.010 0.87 ±0.012 0.91 ±0.013 0.91 ±0.010 0.75 ±0.009 0.74 ±0.009 0.76 ±0.012 0.83 ±0.009

(A) Refuses to answer 0.06 ±0.011 0.05 ±0.011 0.00 ±0.000 0.27 ±0.025 - - - - - - - -
(B) Consistently correct

(B1) All 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000 1.00 ±0.000

(B2) Most 0.93 ±0.002 0.86 ±0.009 1.00 ±0.001 0.92 ±0.004 0.94 ±0.014 0.92 ±0.014 1.00 ±0.000 0.95 ±0.013 0.94 ±0.006 0.88 ±0.010 1.00 ±0.000 0.93 ±0.011

(C) Consistently incorrect
(C1) All 0.00 ±0.001 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 - - - - 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000

(C2) Most 0.12 ±0.018 0.22 ±0.010 0.00 ±0.000 0.43 ±0.010 - - - - 0.11 ±0.018 0.15 ±0.025 0.00 ±0.000 0.67 ±0.016

(D) Two competing 0.43 ±0.017 0.42 ±0.014 0.46 ±0.016 0.60 ±0.010 - - - - 0.39 ±0.068 0.39 ±0.047 0.38 ±0.042 0.83 ±0.050

(E) Many answers
(E1) Non correct 0.00 ±0.002 0.00 ±0.000 0.00 ±0.000 0.00 ±0.000 - - - - - - - -
(E2) Correct appears 0.28 ±0.006 0.28 ±0.008 0.40 ±0.009 0.52 ±0.009 - - - - - - - -
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