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Abstract

This thesis addresses the problem of Prepositional Phrase (PP) attachment disambiguation,
a key challenge in syntactic parsing. In natural language sentences, a PP may often be
attached to several possible candidates. While humans can usually identify the correct
candidate successfully, syntactic parsers are known to have high error rated on this kind of
construction. This work explores the use of compositional models of meaning in choosing
the correct attachment location.

The compositional model is defined using a recursive neural network. Word vector repre-
sentations are obtained from large amounts of raw text and fed into the neural network. The
vectors are first forward propagated up the network in order to create a composite represen-
tation, which is used to score all possible candidates. In training, errors are backpropagated
down the network such that the composition matrix is updated from the supervised data.
Several possible neural architectures are designed and experimentally tested in both English
and Arabic data sets.

As a comparative system, we o↵er a learning-to-rank algorithm based on an SVM classifier
which has access to a wide range of features. The performance of this system is compared
to the compositional models.

Thesis Supervisor: Regina Barzilay
Title: Professor
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Chapter 1

Introduction

One of the major challenges in syntactic parsing is resolving ambiguities in prepositional

phrase (PP) attachment — determining the head of a PP in the tree. Traditional research

has formulated this problem as a binary decision: deciding whether a PP should attach to

a preceding noun or verb (Figure 1-1). Earlier work has used rule-based [5] and statistical

methods [20, 6], achieving results of 80-85%. These numbers are surprisingly close to an

upper bound of human judgment, when restricted to quadruples of verb-noun-preposition-

noun. However, when humans have access to the full sentence, they are able perform as high

as 93% [20].

The above line of work has been criticized as assuming an unrealistic parsing scenario:

an oracle parser is used to provide two possible attachments, ignoring all other theoretically

possible heads [1]. Indeed, recent work has shown that PP attachment remains a major source

of errors in parser evaluation [13]. Furthermore, while incorporating semantic knowledge has

proven useful in the constrained scenario [24], most state-of-the-art parsers do not exploit

such resources. A notable exception is the work in [1], which achieved gains in parsing and

specifically in PP attachment by substituting words with semantic classes as a preprocessing

step before running a statistical parser.

Arabic exhibits several syntactic phenomena that make parsing, and specifically PP at-

tachment, a challenging task. Its free word order allows for PPs to move quite far from their

11



heads; and its construct state construction (similar to compound nouns) causes ambiguity

between several possible head nouns (Figure 1-2). In addition, its rich morphology increases

out-of-vocabulary rate and sparsity challenges for lexicalized models. A comparison between

Arabic and English treebanks shows that out-of-vocabulary words are more common in the

Arabic data set, in particular for verbs and nouns, which are potential heads of a PP. For

further statistics regarding Arabic and English data sets, see Section 4.2.

Previous work on Arabic PP attachment has attempted to address such problems by using

the web as a corpus for collecting collocation scores [2] or by engineering state-split features

for the Stanford parser [9]. This thesis present a di↵erent approach, based on learning

compositional representation of words and phrases for disambiguating the PP attachment

decision. This model exploits word vector representations and recursively builds composite

representations through di↵erent architectures of neural networks. As a comparative system,

a linear classifier which has access to a wide range of features is also implemented and tested.

The use of word vector representations created from raw texts is discussed in Chapter 2,

while Chapter 3 defines the models explored in this work. The data sets that are used are

reviewed in Chapter 4 and experiments and results are presented in Chapter 5.

12
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Figure 1-1: Two possible attachments for the PP “with the telescope”. In the correct

attachment (Left), the PP attaches at the VP level and the head is the verb “saw”. In the

wrong attachment (Right), the PP attaches at the NP level and the head is the noun “man”.
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Figure 1-2: An Arabic construct NP with two possible attachments for the PP
⇣ËP A ⇣Æ À @ ⌦̇

 Ø
⇣ÈJ⌦ ⇣ÆK⌦ Q  Ø B @ (“in the African continent”). In the correct attachment (Left) the PP attaches to

the second level, meaning “changing the rules of commercial flights in the African continent”.

In the wrong predicted attachment (Right), the PP attaches TO the top level, meaning the

the change, rather than the rules, is in the African continent. Notice that there are three

possible attachment levels in this construction.
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Chapter 2

Word Vector Representations

2.1 Background

Word representations have been used in Natural Language Processing at least since the

1980s. However, the gained renewed popularity in recent years due to advances in devel-

oping e�cient methods for inducing representations from large amounts of raw text. A

survey of di↵erent representations is given in [25], where three types of word representa-

tions are discussed. Distributional representations are based on co-occurrences statistics of

words in some context. Since they have dimensionality the size of the vocabulary, di↵erent

dimensionality reduction techniques can later be applied. For example, using Singular Value

Decomposition leads to Latent Semantic Analysis [8]. Another type of representation is

based on word clustering, where Brown clustering is a notable example. Finally, distributed

representations, also known as word embeddings, are low dimensional, real values vectors,

where each dimension is a latent feature of the word.

Traditionally, distributed representations have been created by using neural network

language models. A major obstacle in using such representations is that the neural language

models are typically slow to train. Thus much work has focused on e�cient methods for

training such models, for example in [7, 4]. More recently, two successful algorithms for

training distributed word representations have been suggested in [16]: the continuous bag-

14



of-words and Skip-gram model. Both models essentially dispense with the non-linearity that

is the heavy factor in other models. Further modifications to the Skip-gram models improved

e�ciency [17]. The following section presents this model is some details.

2.2 The Skip-gram model

The Skip-gram model has been suggested in [16, 17] as an e�cient method for learning word

vector representations from large raw text data. The model optimizes the following objective

function:
1

T

TX

t=1

X

�cjc,j 6=0

log p(w
t+j

|w
t

) (2.1)

where the training corpus is raw text with T words w
1

, ...w

T

. For each word w

t

we define a

context window of size c on each side of w
t

, and try to maximize the average log probability

of every word generating the words in its context. This probability is defined as the softmax:

p(w
t+j

|w
t

) =
exp(v0

wt+j

T

v

wt)P
W

w=1

exp(v0
w

T

v

wt)
(2.2)

where v

w

and v

0
w

are input and output vector representations of word w that are obtained

from a neural net-like architecture, but without the non-linearity. Since calculating this

probability requires summing over the entire size W vocabulary, it is ine�cient to calculate

in practice. In [17] several modifications are suggested in order to improve e�ciency, includ-

ing hierarchical softmax. In this approximation, the W vocabulary words are represented

in a binary Hu↵man tree, where more frequent words are assigned shorter binary codes.

Calculating the probability p(w
t+j

|w
t

) is then carried by following the tree path to w

t+j

and

taking the product of all the terms of the form �(v0
w

0
T

v

wt), where w

0 is an internal node on

the path to w

t+j

.

The Skip-gram model is optimized with stochastic gradient descent, by going over the

entire data set in one pass, The learning rate is decreased after each mini-batch in a linear

fashion until approaching a learning rate close to zero at the end of the raw text. Another
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peculiarity of the algorithm is that, for each word w

t

, instead of looking at all the neighbors

in a window of fixed size c, a random size < c is sampled and only the words in that smaller

window are considered as the current context. This has the e↵ect of given higher weight to

closer words in the gradient updating.

In the experimental results reported in Chapter 5, the word vectors are obtained using

the word2vec tool.1 The Skip-gram model is trained with hierarchical softmax and default

parameter settings. This also includes removing word types of small count (< 5). The only

variant considered is the dimensionality of the word vectors, which are varied from 25-200.

Preliminary experiments with other model variations (e.g. negative sampling), have not

resulted in notable performance gains.

1
https://code.google.com/p/word2vec.
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Chapter 3

Models

3.1 Compositional models

Since PP attachment disambiguation requires both semantic and syntactic knowledge, we

introduce a notion of compositionality. Given vectors u, v 2 Rn, representing two words with

relation R, and given some knowledge source K, let their composition vector be defined as

p = f(u, v, R,K) (3.1)

There are many possible realizations of the function f , including additive, multiplicative

and non-linear functions [18]. Importantly, the resulting vector is of the same dimension as

its constituents, i.e., p 2 Rn, which allows for recursive application of the compositionality

operator (similarly to the ideas in [23]). Let s(p) = wp denote the score of the composition.

Given a sentence x = x

1

, ..., x

n

with part-of-speech tags t = t

1

, ..., t

n

, let PREP (x) =

i

1

, ..., i

k

index prepositions in x, i.e., t
ij = prep 8j. Let y

i

1

, ..., y

ik
denote the corresponding

PP attachments, where attachment y
j

= (h, b) means that the head of the PP is x
h

and its

(right) boundary is x

b

. The score of preposition x

j

and attachment y

j

is s(x
j

, y

j

). Below

we discuss possible definitions for this score. During testing, we are seeking the maximizing

attachment: argmax
y2Y(xj)

s(x
j

, y), where Y(x
j

) is the set of all possible attachments for x
j

.

Since we focus on the limited problem of PP attachment, this set is expected to be tractable
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in practice.

For training, we propose a max-margin framework. Given a training corpus of pairs of

sentences and attachments, {x(i)

, y

(i)}, we seek to maximize the following objective function:

X

i

X

j2PREP (x

(i)
)

s(x(i)

j

, y

(i)

j

)� max
y2Y(x

(i)
j )

(s(x(i)

j

, y) +�(y, y(i)
j

))� �

2

X

✓

✓

2 (3.2)

where the loss is defined as �(y, y(i)
j

) = 1 � �(h, h(i)

j

) + |b � b

(i)

j

|, where y = (h, b) and

y

(i)

j

= (h(i)

j

, b

(i)

j

). If we know the span of the PP (b is given), then the loss reduces to

�(y, y(i)
j

) = 1 � �(h, h(i)

j

). Such loss functions make the objective non-di↵erentiable, so we

cannot compute a gradient. Instead, we can use the subgradient:

X

i

X

j2PREP (x

(i)
)

@s(x(i)

j

, y

(i)

j

)

@✓

�
@s(x(i)

j

, y

max

)

@✓

� �✓ (3.3)

The score of a single attachment s(x
j

, y

j

), where y

j

= (h, b), is defined as:

s(x
j

, y

j

) = s(f(x
h

, p

j,b

)) + s(f(x
j

, p

j+1,b

)) + s(p
j+1,b

) (3.4)

where f is the composition operation from Eq. 3.1 and p

j,b

is the combined representation of

words x
j

, ..., x

b

. Here the first term corresponds to the attachment of the PP p

j,b

to the head

x

j

and the second to the composition of the preposition x

j

with the NP p

j+1,b

. The third

term represents the NP, and is constructed recursively according to the internal structure of

the NP. Again, if we assume we know the span of the PP, as well as its internal structure,

then the score reduces to s(x
j

, y

j

) = s(f(x
h

, p

j,b

)).

The function f can be defined using a neural net as follows:

f(u, v) = g(W [u v] + b) (3.5)

where b is the bias term, [u v] 2 R2n is a concatenation of u and v, and g is a non-linear

function such as tanh or sigmoid. Using this scoring function, the objective can be maximized
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by backpropagation through structure and subgradient methods [23]. For optimization, we

use L-BFGS. 1

An example of the backpropagation algorithm is shown in Algorithm 4. If desired, errors

can be backpropagated all the way down to the word vectors. This updating is explored in

the experiments and discussed in Section 5.1.

The scoring and composition functions defined above are general functions used in pars-

ing. We would like to specialize them to the case of PP attachment. The general form of the

composition function (Eq. 3.1) suggests a dependency on the type of relation R and existing

knowledge K. To incorporate the type of relation into the composition function, we can have

di↵erent matrices W

R for the di↵erent compositions in each PP attachment. In this case,

we have at least three syntactic relations involved in each PP attachment: attaching the PP

to the candidate head (R
h,pp

), attaching the preposition to the NP (R
p,np

), and building the

NP (R
np

). We then define the corresponding matrices: W

Rh,pp , WRp,np , and W

Rnp ; if we

assume we know the internal structure of the NP, we can ignore the last of these. Various

such neural network architectures are discussed in Section 3.2.1.

The advantage of introducing multiple matrices WR is in capturing di↵erent aspects of

the data by di↵erent parameters. In theory, there’s no good reason to assume one parameter

matrix would perform well across all compositions. However, the downside in increasing the

number of estimated parameters is more sparsity. The di↵erent possibilities are experimen-

tally tested and discussed in Section 5.1.

3.2 Neural Net Architecture

3.2.1 Tree Structure

There are di↵erent ways to exploit the elements participating in each PP attachment: the

candidate head, the preposition, and any descendants of the preposition. Perhaps the sim-

1We use the Matlab implementation by Mark Schmidt, available at http://www.di.ens.fr/
~

mschmidt/

Software/minFunc.html.
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plest is to consider only the candidate head and the first child of the preposition. These two

words are then fed into a neural network and the resulting parent is scored by the scoring

vector (Figure 3-1a). A more elaborate process first composes the preposition with its first

child, then composes their parent with the candidate head (Figure 3-1b). Finally, we can

consider the entire NP subtree of the preposition, first composing all words according to the

tree structure, then composing the resulting NP parent with the preposition, and then with

the head (Figure 3-1c). In all cases the top parent is then scored by the scoring vector w.

The trees in Figure 3-1 are all binary; however, a PP attachment essentially involves

three elements: the candidate head, the preposition, and the child or descendants of the

preposition. These may be combined at one step using a ternary composition (Figure 3-2).

p

childhead

(a) Head-Child model

p2

p1

childprep

head

(b) Head-Prep-Child model

p2

p1

prep subtree

NP

prep

head

(c) Head-Prep-Subtree model

Figure 3-1: Neural network architectures using binary compositions.

p

childprephead

(a) Head-Prep-Child ternary model

p

prep subtree

NP

prephead

(b) Head-Prep-Subtree ternary model

Figure 3-2: Neural network architectures using ternary compositions.

20



The NP subtree below the preposition (as in Figure 3-1c) is given as a dependency tree

in the used data sets. However, the binary composition operations assumes a binary tree.

In the case where a certain word has more than one child, it is not straightforward to apply

the composition operations. To deal with this issue, a binary tree is built during the forward

propagation step. Suppose a word w has children c

1

and c

2

. We can compose them with

their head word in two steps: first compose one child with the head word w, yielding a

parent p

1

, then compose the second child with p

1

to get the final parent p

2

. The order in

which the children are composed can be, for example, starting from the closest child and

moving towards the farthest one, or vice versa. Algorithm 3 shows the pseudo-code when the

farthest child is the first to be composed with the head. The intuition for this is that closer

children should contribute more to the meaning of the phrase, so they should be composed

at higher levels of the tree. Conversely, it could be argued that composing less important

words at the bottom of the tree blurs the meaning, so we experiment with both options. Yet

another method for composing words in a dependency tree is suggested in [22].

Once the tree has been built, gradients are calculated with back-propagation through

structure (Algorithm 4. The experimental results of these algorithms are discussed in Sec-

tion 5.1.

3.2.2 Granularity of Composition Matrices

The simplest model assumes one composition matrix W for all binary composition opera-

tions. In the case of the Head-Child model (Figure 3-1a), we only have one such composition.

However, the Head-Prep-Child model (Figure 3-1b), for example, contains two compositions,

so we might want to use di↵erent matrices W top and W

bottom for the two compositions. Fur-

thermore, if we consider the entire subtree of the preposition (Figure 3-1c), we may want to

use di↵erent matrices for the di↵erent compositions in the subtree. For example, we could

use a di↵erent matrix based on the depth of the composition in the subtree. Such a formula-

tion would allow the model to learn di↵erent parameters based on the depth of the node in

the tree, reflecting the intuition that words that are composed farther down the tree should

21



have a di↵erent (arguably, smaller) contribution to the overall representation of the subtree.

An orthogonal direction to increase granularity of composition matrices is to assign dif-

ferent matrices when composing with di↵erent candidate heads. Each preposition may have

several candidate heads where it could attach (see Table 4.2 for relevant statistics). We might

have some information about these heads that could be relevant to the composition. For

example, we might know their part-of-speech or some morphological features. At the least,

we have access to their position in the sentence with respect to the preposition. It turns out

that the distance of the candidate head from the preposition is an extremely informative

feature (see also the experiments in Section 5.2), which calls for using di↵erent composition

matrices when composing with heads in di↵erent distances. However, to avoid explosion of

parameters, it is useful to bin the distances based on the distribution in the training data.

The allowed distances are 1-5, where all cases of distance � 5 are put in the same bin. The

experiments in Section 5.1 show the benefit of this approach.

The experimental results reveal a complicated relation between granularity of matrices

and prediction quality. To some extent, it is useful to go beyond the global matrix formulation

and consider multiple matrices based on various considerations. On the other hand, some

of the more complicated models (e.g. the Head-Prep-Subtree model of Figure 3-1c) do not

benefit from multiple composition matrices. For further discussion, see Section 5.1.

3.2.3 Exploiting Context

The models described so far consider only three elements: the candidate head, the preposi-

tion, and its descendants. While the descendants of the preposition capture one aspect of

contextual information, there are other words in the sentence which might tell us something

about the attachment decision. Indeed, the experiments described in Section 5.1 suggest

that it is useful to exploit the words surrounding the candidate head, especially the follow-

ing word. This can be integrated in the neural net architecture in the following way: for each

candidate head, represented by a vector of size n, concatenate the vector representing the

following word. If the following word is not in the word vector vocabulary, or if the head is

22



immediately followed by the prepositions, append a zero vector. This results in a 2n vector

representation for each head. To compose it with another vector of size n (representing

the PP), we need a composition matrix of size n ⇥ 3n, similar to the ternary composition

described above. The utility of using context in such a way is corroborated by the results in

Section 5.1.

3.3 Learning to Rank with Linear Classification

As a comparative system, we consider treating the problem as a learning-to-rank problem.

Each instance provides us with a correct candidate head and several incorrect candidates.

We can rank these as as a simple list where the correct candidate has the highest rank and

all other candidates have a single lower rank. Then several learning-to-rank methods can be

used to train a model [14]. For example, given a feature vector x, a weight vector w and a

linear scoring function f(x) = hw, xi, we know that:

f(x
i

) > f(x
j

), hw, x
i

� x

j

i > 0 (3.6)

We then say that x

i

is ranked before x

j

if hw, x
i

� x

j

i > 0. Therefore we can train a

linear classifier to determine the pairwise decision and translate this to a ranking. In the

experiments in Section 5.2, the linear classifier used is Support Vector Machines.2

One advantage of using an SVM is that many features can be easily incorporated. This

includes syntactic and morphological features, contextual features, as well as external knowl-

edge resources. The knowledge resources are discussed in Section 4.3; the specific features

are discussed in Section 5.2. It is less obvious how to incorporate word vectors learned from

raw data. Using the dot product between word vectors is shown to be empirically fruitful,

but this limits their contribution to the learned model to one dimension. Attempts to use

more dimensions in the SVM classification were unsuccessful. In contrast, the compositional

models are able to capture the full dimensionality of the word vectors.

2I use the SVMRank tool: http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html.
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Chapter 4

Data

4.1 Raw Text Corpora

The majority of the experiments are conducted on Modern Standard Arabic data, which are

described below, but some of the experiments are repeated on English data for comparison.

The initial word vectors are obtained from raw text corpora using the Skip-gram model

(Section 2.2). Two Arabic corpora are considered for creating word vectors: arTenTen and

the Arabic Gigaword.

arTenTen. This is a large scale corpus of automatically crawled web texts comprising 5.8

billion words [3]. The texts have been gatherd in 2012 and a sub-corpus has been tokenized

and lemmatized with MADA [10, 11]. Due to the morphological nature of the Arabic lan-

guage, it is important to tokenize the text in order to separate some of the prepositions from

their child words. In addition, working on the lemma level allows sharing of information be-

tween di↵erent morphological variants which share the same meaning. After pre-processing

the sub-corpus we have 130 million tokens from which the word vectors are trained.
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Arabic Gigaword. This corpus contains newswire texts from several news agencies, be-

ginning from as early as 1994 up to 2011.1 It contains 1.2 billion words. The entire corpus

has been tokenized and lemmatized using MADAMIRA, a new faster version of MADA.2

Again, prepositions are separated and lemmas are considered for subsequent experiments.

The whole Arabic Gigaword corpus is much larger than the morphologically processed

sub-corpus of arTenTen. However, in preliminary experiments with word vectors obtained

from the two corpora, there was no notable performance di↵erence between them. In fact,

arTenTen word vectors tend to perform slightly better for the PP attachment task, despite

the smaller size of the corpus. This might be explained by its relatively more up-to-date texts.

Thus, the results reported in Chapter 5 are all with word vectors created from arTenTen.

English. For the English experiments I use Wikipedia texts in order to create word vectors.

In particular, the first 1 billion characters from a 2006 dump of Wikipedia are downloaded

and pre-processed to produce raw text.3 This results in 120 million words which are used to

create the word vectors as is, without further pre-processing. In particular, no lemmatization

has been performed, since the data set is assumed to be large enough for a morphologically

poor language such as English.

4.2 Syntactically Annotated Corpora

In order to train the supervised PP attachment model we need an annotated corpus of

PP attachment decisions. These can be extracted from standard treebanks. For Arabic,

the CATiB dependency treebank is used [15]. For English, the standard Penn treebank is

converted to a dependency format with the Pennconverter tool.4

1LDC Catalog No. LDC2011T11.
2The MADAMIRA version used is 1.0 beta, available at http://innovation.columbia.edu/

technologies/cu14012_arabic-language-disambiguation-for-natural-language-processing-applications.
3The data and pre-processing script are available at http://mattmahoney.net/dc/textdata.html.
4
http://nlp.cs.lth.se/software/treebank_converter/.
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As explained in the introduction, the rich morphology of the Arabic language increases

out-of-vocabulary rate and sparsity challenges for lexicalized models. A comparison between

Arabic and English treebanks (Table 4.1) shows that out-of-vocabulary words are more

common in the Arabic data set, in particular for verbs and nouns, which are potential heads

of a PP. Noun heads are more di�cult to detect in Arabic than in English, as evidenced

by their greater distance from their child PP. However, verb heads have roughly the same

distance from their child PP in both languages.

Arabic English

OOV rate 16.7% 12.7%

Verb OOV rate 18.0% 8.9%

Noun OOV rate 17.2% 10.9%

Verb-prep arc length 4.4 4.2

Noun-prep arc length 2.5 1.5

Sentence length 37.4 23.9

Table 4.1: A comparison of statistics from the Arabic and English treebanks. Out-of-

vocabulary (OOV) rates are the fraction of test words not seen in training data; lengths

are averaged over the entire corpus.

Extracting instances of PP attachment from the treebanks is done in the following man-

ner. For each preposition, we look for all possible candidate heads (attachment locations) in

a fixed window. Typically, these are preceding nouns or verbs. Only prepositions which have

a noun child are considered, which leaves out some rare exceptions. Empirically, limiting

the candidate heads to appear close enough before the preposition is not an unrealistic as-

sumption: more than 90% of the PP attachments are covered when considering a maximum

distance of 10 words. Unambiguous attachments with only one possible candidate head are

discarded. Table 4.2 shows statistics of the extracted PP attachment data sets. The data

sets of the two languages are fairly similar in numbers, except for the much larger set of

prepositions in the English data.
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Arabic English

Train Test Train Test

Total 42387 3917 35359 1951

Candidate heads mean (std) 4.5 (1.4) 4.3 (1.4) 3.7 (1.2) 3.6 (1.2)

Vocab size 13127 4380 11429 2440

Head vocab size 8225 2936 10395 2133

Prep vocab size 13 10 72 46

First child vocab size 4222 1424 5504 983

Table 4.2: Statistics of extracted PP attachments from the Arabic and English treebanks.

4.3 Knowledge Resources

Extrnal knowledge resources can be used in both the compositional model (K in Eq. 3.1) and

and the linear classifier. The contribution of such resources to PP attachment, and parsing in

general, is questionable as previous works have shown mixed results (Section 1). Therefore,

it is interesting to see how such resources contribute in our case in adding semantic and

syntactic information.

On the semantic level, Arabic WordNet [21] contains 11,000 synsets which can abstract

away from the lexical items. In particular, the top and second level hypernym for each word

that is covered in the resource are extracted. On the syntactic level, Arabic VerbNet [19]

provides verb classes and sub-categorization frames for 7748 verbs. These frames contain,

for example, information of which prepositions tend to modify which verbs, which could

be useful for determining the correct attachment. Dividing verbs into classes and nouns

into sub-types (e.g. verbal nouns, participles) can help share information between training

instances. As for the lexical level, it is mostly captured by using word vectors.
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Chapter 5

Experimental Results

5.1 Compositional models

Table 5.1 shows the results of the compositional models on the Arabic and English test

sets. In all shown models, only word vectors are used without additional features. An

analysis of the Arabic results reveals some interesting patterns. As a simple but quite

successful baseline, always choosing the closest candidate head gives a 63% accuracy, which

is useful to keep in mind. The simplest compositional model is Head-child (Figure 3-1a),

which considers only the candidate head and the first child of the preposition, with one

composition operation. Is able to perform close to the baseline (59% compared to 63%),

but only when high dimensional vectors (100-200 dimensions) are used. Lower dimensional

vectors give relatively poor results (40-47%). Including the preposition and building a two-

step composite structure (Figure 3-1b), as in model Head-prep-child, improves the results

to 68% with 100-200 dimensions. Further small improvements are achieved by the local

variant, which allows di↵erent composition matrices for the top (head+PP) and bottom

(preposition+child) compositions, and by the ternary model (Figure 3-2a).

All of the previous models require using vectors of 100-200 for getting reasonable results.

Things are much di↵erent once we consider not only the candidate head, but also its context

(Section 3.2.3). When the word following the head is appended to it, the results jump to 70%
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with just 25 dimensional vectors and up to 73% with higher dimensions. The best results

are achieved by distinguishing the candidate heads based on their distance from the PP

(Section 3.2.2), ranging from 72-73% with lower dimensional vectors to 76-77% with higher

dimensional ones. Combining the contextual with the distance based model (dist+next)

does not yield additional improvements, except for the 50 dimensional case (+3%).

Arabic English

25 50 100 200 25 50 100 200

Head-child 40 47 62 62 39 58 59 59

Head-prep-child 40 48 68 68 40 68 69 67

Head-prep-child-local 42 49 69 69 41 69 70 70

Head-prep-child-ternary 42 50 69 70 41 66 67 70

Head-prep-child-next 70 72 73 73 77 78 79 79

Head-prep-child-dist 72 73 77 76 82 83 82 83

Head-prep-child-dist+next 72 76 77 77 84 85 85 85

Table 5.1: Results of compositional models in Arabic and English. Head-child considers

only candidate head and first child of the preposition (Figure 3-1a), while Head-prep-child

considers also the preposition (Figure 3-1b). The local model allows di↵erent composition

matrices W for the top (head + PP) and bottom (prep + child) compositions. The ternary

model uses one ternary composition operation (Figure 3-2a). The next version includes

the word following the candidate head as context, while the dist version assigns di↵erent

composition matrices based on the binned distance of the candidate head from the PP.

The English results generally follow the same trends as the Arabic ones. Simpler models

do not perform as well as more complex ones and require higher dimensional vectors. The

more complex model achieve good results even with low dimensional word vectors. One

di↵erence is in the combined model that considers both context and distance (dist+next):

in the English case it exhibits a significant improvement from the distance based model

(+2%), reaching 85%, whereas in the Arabic case both give similar results. This puts the

29



best English results (94-95% with the Head-prep-child-dist+next model) about 8% higher

than the best Arabic results (76-77% with the same model). This gap may be explained by

the rich Arabic morphology which requires of lemmatization and tokenization (Section 4.1).

Such pre-processing may introduce errors which a↵ect the trained word vectors. In addition,

lemmatization may collapse di↵erent forms that could have di↵erent syntactic behavior,

although this is di�cult to verify. Note that the Arabic and English data sets are similar in

size for both the raw texts used for creating word vectors and the annotated treebanks used

to extract PP attachment cases (Chapter 4).

The results discussed so far are for models which do not consider the entire PP structure,

only the preposition and its first child. In practice, other words in the PP might contribute

to its meaning and to disambiguating the attachment decision. Section 3.2.1 discusses how

to build a compositional representation from the PP structure. See algorithms 3 and 4 for

forward and backward propagation in such trees, respectively. The results of this model on

the Arabic test set, with a global composition matrix, are 34%, 42%, 46%, and 50%, for

vector dimensions 25, 50, 100, and 200. These results are clearly worse than most of the

simpler models which only consider the first child of the preposition. Experimenting with

di↵erent variations on this model has not led to any improvements. Attempted variations

include: building the tree from left to right, limiting the span of the PP to 5-10 words, and

allowing di↵erent composition matrices at di↵erent depths in the tree. It seems that adding

more words to the composite representation of the PP does not lead to a distinguishing

representation with regards to the possible candidate heads. The first child of the PP

turns out to carry enough meaning to e↵ectively disambiguate the attachment decisions,

and including other words in the PP has no positive e↵ect on the performance.

A natural question to explore is whether the initial word vectors can be updated based

on the supervised PP attachment decisions. This can be achieved by backpropagating the

errors all the way down to the word vectors. Then, the updated word vectors can be used in

test time to better capture the PP attachment decisions. Unfortunately, doing this has not

resulted in better accuracy on the test set. While updating the word vectors leads to slightly
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better training accuracy, in test time the accuracy is similar or worse than not updating

the word vectors, even when the regularization parameters is varied. A possible explanation

could be that the initial word vectors are already good enough in capturing word similarities

that are meaningful to PP attachment, such that further updating them is not helpful.

5.2 Learning to rank model

The results of the learning to rank model with the SVM classifier are shown in Table 5.2.

The SVM classifier (Section 3.3) has access to a large number of features, which are described

below. They can be divided into feature groups based on their source: Treebank, Wordnet,

Verbnet, and raw texts. In this section only results for Arabic are reported.

The lexical treebank features achieve only 55.8% accuracy, with a slight improvement

from POS features. The biggest jump (+17%) comes from including the normalized distance

of the candidate head from the preposition. Further including contextual and morpho-

syntactic features achieves almost 77%. It should be noted that not all morphological features

were found beneficial. When doing ablation testing, determiner features were found useful

but gender, number, and person features were redundant. Including semantic and syntactic

knowledge resources brings another small improvement (+0.7%), reaching 77.6%, and using

cosine similarity of word vectors from raw data has a similar e↵ect. Combining all features,

this model achieves an accuracy of 78.4%.

Treebank features. These features are extracted from the annotated treebank. They

include lexical features like the lemma of the candidate head, the preposition, and the first

child of the preposition; morpho-syntactic features as the part-of-speech (verb/noun) and

morphological features (definiteness, number, gender, person) of the candidate head; contex-

tual features which are lexical and syntactic features of neighboring words; and distance of

the candidate head from the PP.
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Verbnet features. The Arabic Verbnet (AVN) contains sub-categorization frames, from

which verb-preposition pairs have been extracted. If the preposition appears with the candi-

date verb in such a frame, a boolean feature is hit. A similar feature is used if a preposition

appears with a candidate verbal noun. Other features include whether the candidate head

and the child are verbal nouns or participles. Furthermore, if a verb appears in an AVN verb

class, it fires a unique feature.

Wordnet features. The Arabic Wordnet (AWN) includes synset information from which

we extract the topmost and second top hypernym. Separate such features are given to the

candidate head and the child.

Raw text features. The word vectors which were created from raw text are used by

taking the cosine similarity between the candidate head and the child of the preposition. In

order to include information about the preposition in the word vectors, the raw text has been

modified such that prepositions are concatenated to their following nouns,1 after which word

vectors have been trained. This has the e↵ect of viewing preposition-child pairs as single

words, so if the same word appears with a di↵erent preposition it will have a di↵erent vector.

The feature is then the cosine similarity between that concatenated vector and the candidate

head. In practice, this heuristic gives better results than not including the preposition. Both

arTenTen and Gigaword vectors are considered.

1In Arabic the preposition is always followed by its child, which makes this processing possible.
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Accuracy Top-2 Accuracy

Treebank Lexical 55.8 79.9

+POS 57 80.8

+Distance 74.1 92

+Context+morph-syntax 76.9 92.4

Treebank+AVN 77.5 92.3

Treebank+AWN 77.1 92.4

Treebank+AVN+AWN 77.6 92.2

Treebank+arTenTen 77.3 92.7

Treebank+Gigaword 75.2 92.6

Treebank+arTenTen+Gigaword 77.8 92.7

All 78.4 93

Table 5.2: Results of learning to rank models in Arabic. Treebank features are extracted

from the Arabic treebank. Lexical features include lemmas of candidate head, preposition,

and child; POS identifies the part-of-speech of the candidate head; Distance is the candidate

head normalized distance from the PP; context and morph-syntax features include other

words in the sentence and their morphology. Treebank+AVN/AWN includes all tree-

bank features and the Arabic Verbnet/Wordnet features; and Treebank+corpus includes

all treebank features and cosine similarity of word vectors created from said corpus. All

combines all features.
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Chapter 6

Conclusions and Future Work

This work o↵ers compositional models of word vector representations in order to disam-

biguate Prepositional Phrase attachment decisions, focusing on the Arabic language. Word

vectors are initially trained from a large corpus of raw text. They are then combined in a

recursive neural networks to produce a composite representation, which is used to score all

possible attachment locations. The composition matrices and scoring vectors are trained in

a max-margin framework using backpropagation through structure.

Various architectures of neural networks are suggested and experimentally investigated.

It is shown that using the first child of the preposition is superior to exploiting the whole PP

structure. The best model is achieved by combining two variations: first, training di↵erent

composition matrices based on the distance of the candidate attachment location from the

PP, and second, concatenating neighboring words to extend the vector representation.

Since the compositional models have access only to the initial word vectors and no other

features, the results are compared with an SVM classifier which exploits a wide range of

contextual and external features. Experiments show that the compositional models are able

to perform as well as the SVM ranker even though their input is limited to word vectors.

There are several possible directions for future work. First, the success in disambiguating

PP attachment decisions without solving the entire parsing problem can be exploited by

combining such systems in complex parsers, either as additional features or by reranking
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parser output. Second, the neural networks can be modified in a number of ways. For

example, dropout is a technique that is known to reduce co-adaptation of features in feed-

forward neural networks [12]. More work is needed to e↵ectively update the word vectors,

either by jointly learning word vectors and PP attachment parameters, or in a successive

manner.
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Appendix A

Algorithms

Table A.1 shows the notation used in the following algorithms.

Algorithm 1 Head-Prep-Child Cost

1: procedure HeadPrepChildCost(✓,�, N, x

h

, x

p

, x

c

, y)

2: W, b, w  GetParams(✓)

3: x

p,c

, x

h,pp

 Zeros() . Init PP parents and head+PP parents

4: s Zeros() . Init scores

5: for all x

(i)

h

, x

(i)

p

, x

(i)

c

do

6: x

(i)

p,c

 f(W [x(i)

p

; x(i)

c

] + b) . Compose prep with child

7: for all x

(i,j)

h

do

8: x

(i,j)

h,pp

 f(W [x(i,j)

h

; x(i)

p,c

]) . Compose candidate head with PP parent

9: s

(i,j)  w

T

x

(i,j)

h,pp

. Calculate score

10: end for

11: end for

J  1

N

[
P

i

s

(i,y

(i)
) � argmax

j

(s(i,j) +�(x(i,j)

h

, x

(i,y

(i)
)))]� �

2

P
✓

✓

2

12: return J . The cost is J

13: end procedure
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Algorithm 2 Head-Prep-Child Gradient

1: procedure HeadPrepChildGrad(x
h

, x

p

, x

c

, x

h,pp

, x

0
h,pp

, x

p,c

, x

0
p,c

, y, y

max

)

2: dw  
P

i

[x(i,y

(i)
)

h,pp

� x

(i,y

(i)
max

)

h,pp

] . Calculate gradient for scoring vector w

3: for all x

0(i)
h,pp

do . Back-propagate for all examples

4: �

(i),gold

h,pp

 f

0(x0(i)
h,pp

) � w

5: �

(i),gold

p,c

 (W T

�

(i),gold

h,pp

)
[n+1:2n]

� f

0(x0(i)
p,c

)

6: end for

7: dW gold  �

gold

h,pp

[xy

h

; x
p,c

]T + �

gold

p,c

[x
p

; x
c

]T . Calculate gold gradient

8: dWmax  �

max

h,pp

[xy

max

h

; x
p,c

]T + �

max

p,c

[x
p

; x
c

]T . Calculate max gradient

9: dW  dW gold� dWmax

. Total gradient is the di↵erence

10: dbgold  
P

i

[�(i),gold
h,pp

+ �

(i),gold

p,c

]

11: dbmax  
P

i

[�(i),max

h,pp

+ �

(i),max

p,c

]

12: db dbgold� dbmax

13: d✓  1

N

[dW ; db; dw]� �✓ . Normalize and regularize

14: return d✓

15: end procedure
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Algorithm 3 Forward Propagate Single Tree

1: procedure Forward-Prop-Single-Tree( x, par, idx,W, b )

2: children GetChildren(par, idx) . Get children of word at current index

3: if Size(children) = 0 then . Terminal node

4: tree MakeTree(x
idx

)

5: return tree

6: else

7: lastchild children(end) . Start with farthest child

8: subtree Forward-Prop-Single-Tree(x, par, lastchild,W, b, dir) . Recurse

9: subtreeparent subtree.root

10: if IsNonterminal(subtree.root) then

11: subtreeparent f(subtreeparent) . Apply non-linearity to nonterminals

12: end if

13: parent W [x
idx

; subtreeparent] + b . Compose word with subtree parent

14: tree MakeTree(parent, x
idx

, subtree) . Create the initial tree

15: parent f(parent)

16: for child children(end� 1) . . . children(1) do . Recurse tree

17: subtree Forward-Prop-Single-Tree(x, par, child,W, b, dir)

18: subtreeparent subtree.root

19: if IsNonterminal(subtree.root) then

20: subtreeparent f(subtreeparent)

21: end if

22: parent W [parent; subtreeparent] + b

23: tree MakeTree(parent, tree, subtree)

24: parent f(parent)

25: end for

26: return tree . This is the resulting tree

27: end if

28: end procedure
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Algorithm 4 Back Propagate Single Tree

1: procedure Back-Prop-Single-Tree( tree, idx,W, � )

2: if IsTerminal(tree.idx) then . Terminal node

3: dW  Zeros()

4: db Zeros()

5: return dW, db

6: end if

7: children tree.children(idx) . Get children

8: child1 children(1)

9: child2 children(2)

10: �

children

 W

T

delta � f

0([child1; child2]) . Calculate children’s �

11: �

child1

 (�
children

)
[1:n]

12: �

child2

 (�
children

)
[n+1:2n]

13: . Recurse each of the two children

14: dW
child1

, db
child1

 Back-Prop-Single-Tree(tree, child1,W, �

child1

)

15: dW
child2

, db
child2

 Back-Prop-Single-Tree(tree, child2,W, �

child2

)

16: if IsNonterminal(tree.child1) then . Apply non-linearity to nonterminals

17: child1 f(child1)

18: end if

19: if IsNonterminal(tree.child2) then

20: child2 f(child2)

21: end if

22: dW  �[child1; child2]T . Calculate gradients from current node

23: db �

24: dW  dW +dW
child1

+dW
child2

. Add gradients from children

25: db db+db
child1

+db
child2

26: end procedure
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Table A.1: Summary of Notation

✓ , Vector of parameters to be learned

W , Composition matrix

b , Bias vector

w , Scoring vector

� , Regularization constant

N , Training set size

x

(i,j)

h

, The j-th candidate head in the i-th example.

x

(i)

p

, The preposition in the i-th example.

x

(i)

c

, The child of the preposition in the i-th example.

y

(i) , Index of the gold head in the i-th example.

y

(i)

max

, Index of the max head in the i-th example.

s

(i,j) , The score of the j-th candidate head in the i-th example.

x

0
p,c

, x

p,c

, Composite representations of preposition p and child c

before (x0
p,c

) and after (x
p,c

) non-linearity. Other com-

positions are indexed similarly.

f , Non-linearity function.

� , Error during backpropagation.

x , Array of word vectors.

par , Indexes of word parents.

idx , Current word index in forward and backpropagation.

tree , Tree built during forward propagation.
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