

Analyzing Hidden Representations in End-to-End Automatic Speech Recognition Systems

Motivation

- Traditional Automatic Speech Recognition (ASR) systems are complex with many moving parts: acoustic model, language model, lexicon, etc.
- End-to-end ASR maps acoustics directly to text, jointly optimizing for the recognition task
- End-to-end models do not require explicit phonetic supervision (e.g. phonemes)
- Research questions:
- Do end-to-end models *implicitly* learn phonetic representations ("g" in "bought")?
- Which components capture more phonetic information?
- Do more complicated ASR models learn better representations for phonology?

ASR Model

- DeepSpeech2 (Amodei et al. 2017):
- Map spectrograms to characters (or blanks)
- Stack of CNNs and RNNs

Layer	Туре	Input Size	Output Size	
1	cnn1	161	41x11	
2	cnn2	41x11	21x11	
3	rnn1	1312	1760	
4	rnn2	1760	1760	
5	rnn3	1760	1760	
6	rnn4	1760	1760	
7	rnn5	1760	1760	
8	rnn6	1760	1760	
9	rnn7	1760	1760	
10	fc	1760	29	

- CTC loss (Graves 2006)
- Map spectrograms x to characters / by considering all possible alignments π

 $\phi_t(\mathbf{x})[\pi_t]$ $p(\pi | \mathbf{x}) =$ $p(\mathbf{l}|\mathbf{x}) =$ $\pi \in \mathcal{B}^{-1}(\mathbf{l}) t = 1$ $\pi \in \mathcal{B}^{-1}(\mathbf{l})$ • where $\phi_t(\mathbf{x}) \in \mathbb{R}^V$ – output at time t

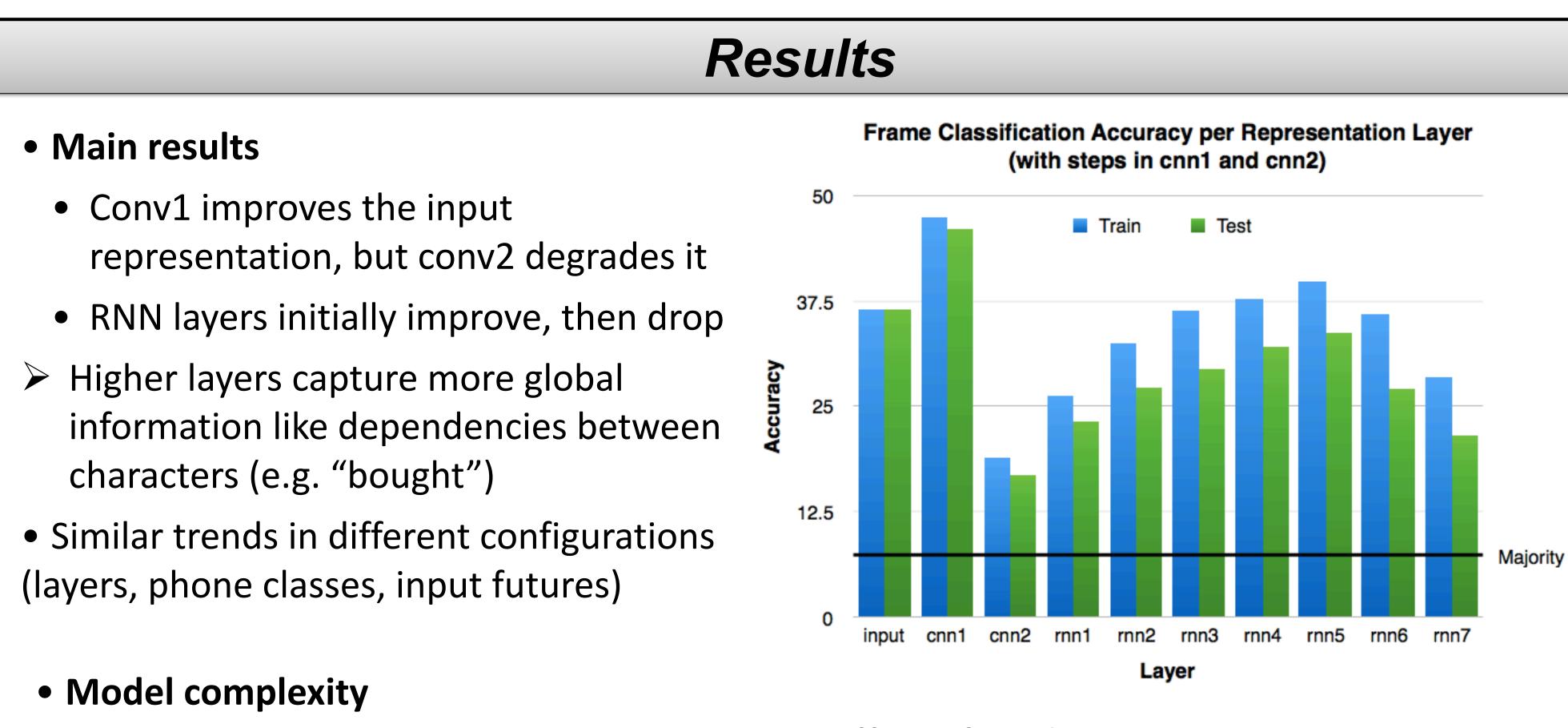
Methodology and Data

Methodology

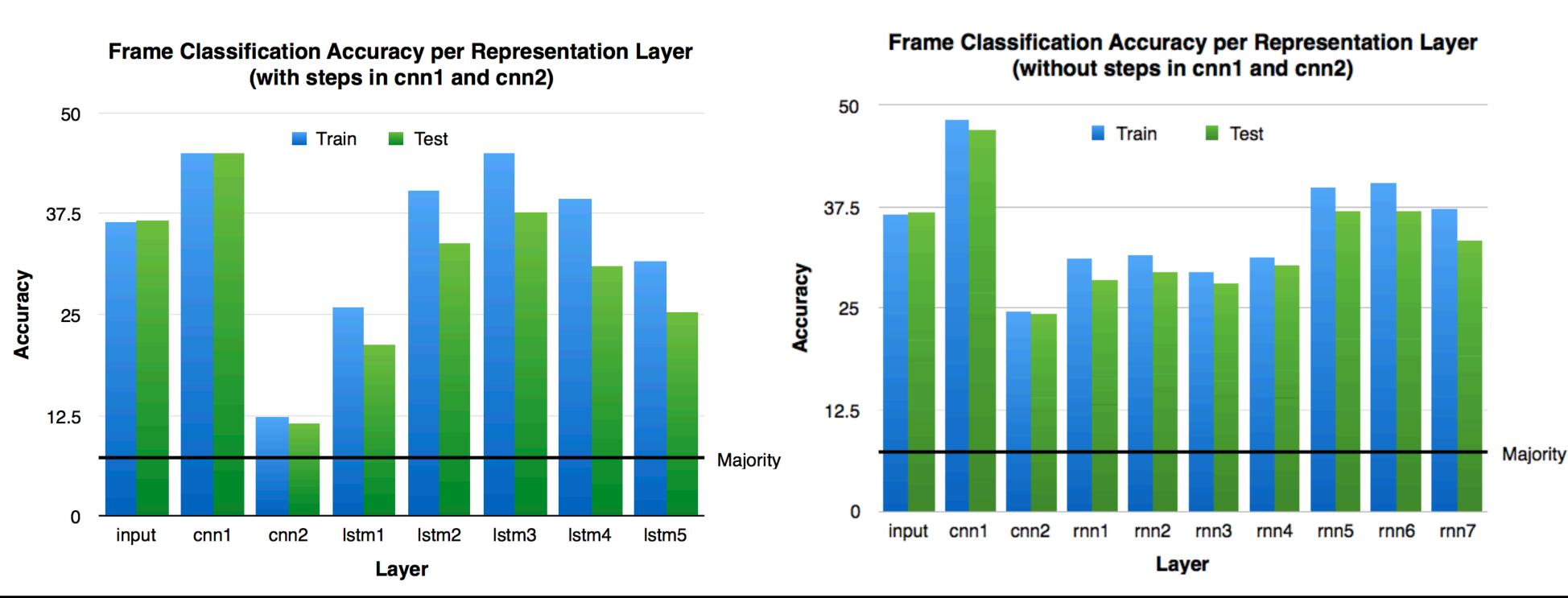
- Train ASR model on transcribed speech
- Extract features from the pre-trained model on a supervised dataset with phonetic segmentation
- Train a simple classifier on a frame classification task: predict phones using the extracted features

• Classifier

- One hidden layer, dropout, ReLU, softmax
- Adam optimizer, cross-entropy loss



- LSTM layer representations are better than RNN, but the respective conv layers are worse
- Deeper model has better WER (12 vs 15) but worse representations for phonology



Yonatan Belinkov, James Glass

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA

{belinkov, glass}@mit.edu

• Data

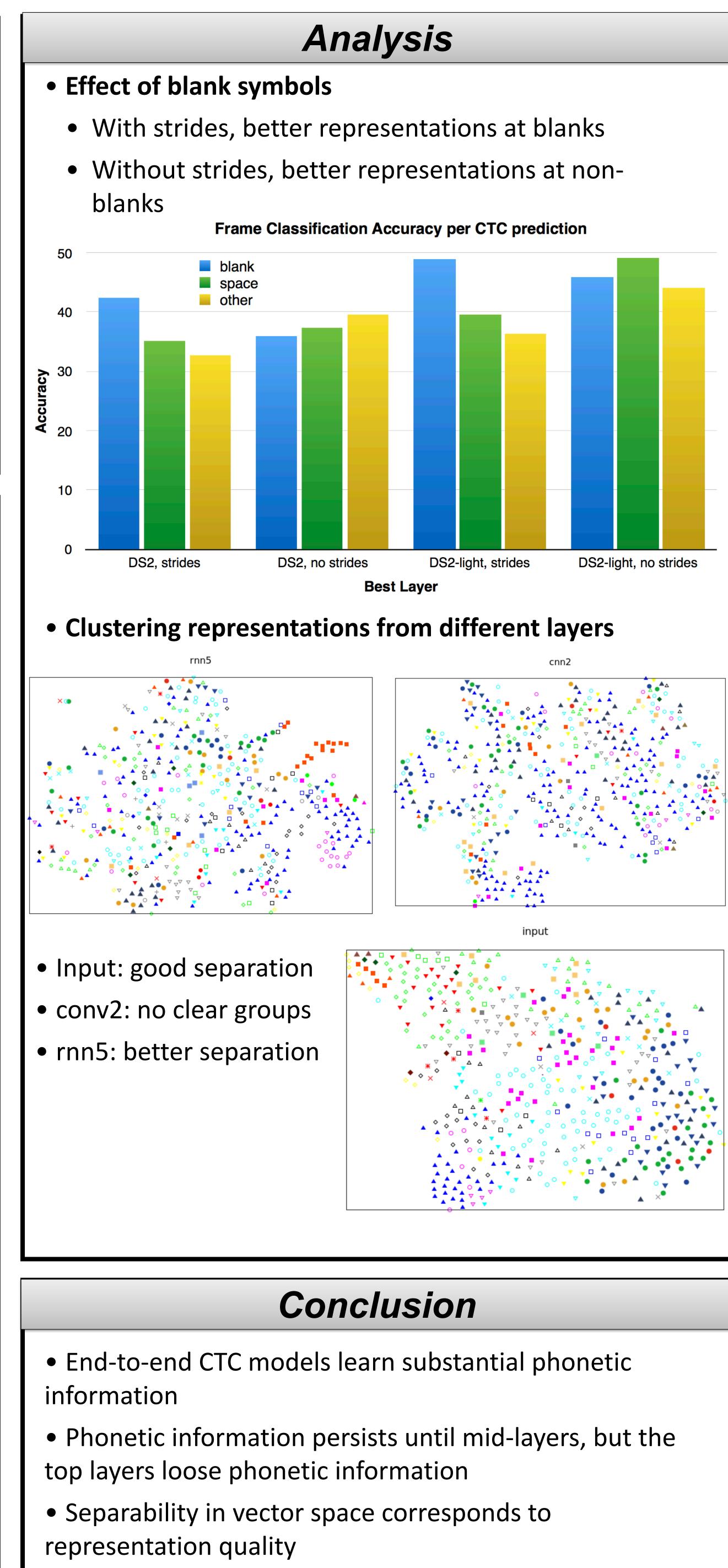
- ASR training: LibriSpeech, 1000 hours of read speech
- Frame classifier: TIMIT, time segmentation of phones

	Train	Dev	Test
Utterances	3,692	400	192
Frames	988K	108K	50K

• Effect of strides

• Similar overall trend

• Less spiky shape without strides, possibly thanks to higher time resolution



Acknowledgements: This work was supported by the Qatar Computing Research Institute (QCRI).