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Abstract
Continuous word and phrase vectors have
proven useful in a number of NLP tasks. Here
we describe our experience using them as a
source of features for the SemEval-2015 task
3, consisting of two community question an-
swering subtasks: Answer Selection for cate-
gorizing answers as potential, good, and bad
with regards to their corresponding questions;
and YES/NO inference for predicting a yes, no,
or unsure response to a YES/NO question us-
ing all of its good answers. Our system ranked
6th and 1st in the English answer selection and
YES/NO inference subtasks respectively, and
2nd in the Arabic answer selection subtask.

1 Introduction

Continuous word and phrase vectors, in which sim-
ilar words and phrases are associated with similar
vectors, have been useful in many NLP tasks (Al-
Rfou et al., 2013; Bansal et al., 2014; Bowman et
al., 2014; Boyd-Graber et al., 2012; Chen and Rud-
nicky, 2014; Guo et al., 2014; Iyyer et al., 2014;
Levy and Goldberg, 2014; Mikolov et al., 2013c).

To evaluate the effectiveness of continuous vector
representations for Community question answering
(CQA), we focused on using simple features derived
from vector similarity as input to a multi-class linear
SVM classifier. Our approach is language indepen-
dent and was evaluated on both English and Arabic.
Most of the vectors we use are domain-independent.

CQA services provide forums for users to ask or
answer questions on any topic, resulting in high vari-
ance answer quality (Màrquez et al., 2015). Search-
ing for good answers among the many responses can

be time-consuming for participants. This is illus-
trated by the following example of a question and
subsequent answers.

Q: Can I obtain Driving License my QID is written
Employee?

A1: the word employee is a general term that refers
to all the staff in your company ... you are all
considered employees of your company

A2: your qid should specify what is the actual pro-
fession you have. I think for me, your chances
to have a drivers license is low.

A3: his asking if he can obtain. means he have the
driver license.

Answer selection aims to automatically catego-
rize answers as: good if they completely answer the
question, potential if they contain useful information
about the question but do not completely answer it,
and bad if irrelevant to the question. In the example,
answers A1, A2, and A3 are respectively classified
as potential, good, and bad. The Arabic answer se-
lection task uses the labels direct, related, and irrel-
evant.

YES/NO inference infers a yes, no, or unsure
response to a question through its good answers,
which might not explicitly contain yes or no key-
words. For example, the answer for Q is no with
respect to A2 that can be interpreted as a no answer
to the question.

The remainder of this paper describes our features
and our rationale for choosing them, followed by an
analysis of the results, and a conclusion.

282



Text-based features
Text-based similarities
yes/no/probably-like words existing
Vector-based features
Q&A vectors
OOV Q&A
yes/no/probably-based cosine similarity
Metadata-based features
Q&A identical user
Rank-based features
Normalized ranking scores

Table 1: The different types of features.

2 Method

Continuous vector representations, described by
Schütze (Schütze, 1992a; Schütze, 1992b), asso-
ciate similar vectors with similar words and phrases.
Most approaches to computing vector representa-
tions use the observation that similar words ap-
pear in similar contexts (Firth, 1957). The theses
of Sahlgren (Sahlgren, 2006), Mikolov (Mikolov,
2012), and Socher (Socher, 2014) provide extensive
information on vector representations.

Our system analyzes questions and answers with
a DkPro (Eckart de Castilho and Gurevych, 2014)
uimaFIT (Ogren and Bethard, 2009) pipeline. The
DkPro OpenNLP (Apache Software Foundation,
2014) segmenter and chunker tokenize and find sen-
tences and phrases in the English questions and an-
swers, followed by lemmatization with the Stanford
lemmatizer (Manning et al., 2014). In Arabic, we
only apply lemmatization, with no chunking, using
MADAMIRA (Pasha et al., 2014). Stop words are re-
moved in both languages.

As shown in Table 1, we compute text-based,
vector-based, metadata-based and rank-based fea-
tures from the pre-processed data. The features are
used for a linear SVM classifier for answer selection
and YES/NO answer inference tasks. YES/NO an-
swer inference is only performed on good YES/NO
question answers, using the YES/NO majority class,
and unsure otherwise. SVM parameters are set by
grid-search and cross-validation.

Text-based features These features are mainly
computed using text similarity metrics that mea-

sure the string overlap between questions and
answers: The Longest Common Substring mea-
sure (Gusfield, 1997) identifies uninterrupted com-
mon strings, while the Longest Common Subse-
quence measure (Allison and Dix, 1986) and the
Longest Common Subsequence Norm identify com-
mon strings with interruptions and text replace-
ments, while Greedy String Tiling measure (Wise,
1996) allows reordering of the subsequences. Other
measures which treat text as sequences of characters
and compute similarities include the Monge Elkan
Second String (Monge and Elkan, 1997) and Jaro
Second String (Jaro, 1989) measures. A Cosine
Similarity-type measure based on term frequency
within the text is also used. Sets of (1-4)-grams from
the question and answer are compared with Jaccard
coefficient (Lyon et al., 2004) and Containment mea-
sures (Broder, 1997).1

Another group of text-based features identifies an-
swers that contain yes-like (e.g., “yes”, “oh yes”,
“yeah”, “yep”), no-like (e.g., “no”, “none”, “nope”,
“never”) and unsure-like (e.g., “possibly”, “con-
ceivably”, “perhaps”, “might”) words. These word
groups were determined by selecting the top 20
nearest neighbor words to the words yes, no and
probably based on the cosine similarity of their
Word2Vec vectors. These features are particularly
useful for the YES/NO answer inference task.

Vector-based features Our vector-based features
are computed from Word2Vec vectors (Mikolov
et al., 2013a; Mikolov et al., 2013b; Mikolov et
al., 2013d). For English word vectors we use
the GoogleNews vectors dataset, available on the
Word2Vec web site,2 which has a 3,000,000 word
vocabulary of 300-dimensional word vectors trained
on about 100 billion words. For Arabic word vectors
we use Word2Vec to train 100-dimensional vec-
tors with default settings on a lemmatized version of
the Arabic Gigaword (Linguistic Data Consortium,
2011), obtaining a vocabulary of 120,000 word lem-
mas.

We also use Doc2Vec,3 an implementation
of (Le and Mikolov, 2014) in the gensim

1These features are mostly taken from the QCRI base-
line system: http://alt.qcri.org/semeval2015/
task3/index.php?id=data-and-tools.

2https://code.google.com/p/word2vec.
3http://radimrehurek.com/gensim/models/
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toolkit (Řehůřek and Sojka, 2010). Doc2Vec pro-
vides vectors for text of arbitrary length, so it allows
us to directly model answers and questions. The
Doc2Vec vectors were trained on the CQA English
data, creating a single vector for each question or
answer. These are the only vectors that were trained
specifically for the CQA domain.

We implemented a UIMA annotator that asso-
ciates a Word2Vec word vector with each in-
vocabulary token (or lemma). No vectors are as-
signed for out of vocabulary tokens. Another an-
notator computes the average of the vectors for the
entire question or answer, with no vector assigned if
all tokens are out of vocabulary.

We initially used the cosine similarity of the ques-
tion and answer vectors as a feature for the SVM
classifier, but we found that we had better results us-
ing the normalized vectors themselves. We hypothe-
size that the SVM was able to tune the importance of
the components of the vectors, whereas cosine sim-
ilarity weights each component equally. If the ques-
tion or answer has no vector, we use a 0 vector. To
make it easier for the classifier to ignore the vectors
in these cases, we add boolean features indicating
out of vocabulary, OOV Question and OOV Answer.

Even though the bag of words approach showed
encouraging results, we found it to be too coarse, so
we also compute average vectors for each sentence.
For English, we also compute average vectors for
each chunk. Then we look for the best matches be-
tween sentences (and chunks) in the question and
answer in terms of cosine similarity, and use the
pairs of (unnormalized) vectors as features.4 More
formally, given a question with sentence vectors
{qi} and an answer with sentence vectors {aj}, we
take as features the values of the vector pair (q̂, â)

defined as:

(q̂, â) = arg max

(qi,aj)

qi · aj

kqik kajk

We also have six features corresponding to the
greatest cosine similarity between the comment
word vectors and the vectors for the words yes, Yes,
no, No, probably and Probably. These features are
more effective for the YES/NO classification task.
doc2vec.html.

4Post-evaluation testing showed no significant difference be-
tween using normalized or unnormalized vectors.

Metadata-based features As a metadata-based
indicator, the Q&A identical user identifies if the
user who posted the question is the same user who
wrote the answer. This indicator is useful for detect-
ing irrelevant dialogue answers.

Rank-based features We employ SVM Rank5 to
compute ranking scores of answers with respect to
their corresponding questions. After generating all
other features, SVM Rank is run to produce rank-
ing scores for each possible answer. For training
SVM Rank, we convert answer labels to ranks ac-
cording to the following heuristic: good answers are
ranked first, potential ones second, and bad ones
third. Ranking scores are then used as features for
the classifier. The normalization of these scores can
be used as rank-based features to provide more in-
formation to the classifier, although these scores are
also used without any other features as explained in
Section 3.

3 Evaluation and Results

We evaluate our approach on the answer selection
and YES/NO answer inference tasks. We use the
CQA datasets provided by the Semeval 2015 task
that contain 2600 training and 300 development
questions and their corresponding answers (a total
number of 16,541 training and 1,645 development
answers). About 10% of these questions are of the
YES/NO type. We combined the training and de-
velopment datasets for training purposes. The test
dataset includes 329 questions and 1976 answers.
About 9% of the test questions are bipolar.

We also evaluate our performance on the Arabic
answer selection task. The dataset contains 1300
training questions, 200 development questions, and
200 test questions. This dataset does not include
YES/NO questions.

English answer selection Our approach for the
answer selection task in English ranked 6th out of
12 submissions and its results are shown in Table
2. VectorSLU-Primary shows the results when we
include all the features listed in Table 1 except the
rank-based features. VectorSLU-Contrastive shows
the results when we include all the features except

5http://www.cs.cornell.edu/people/tj/
svm_light/svm_rank.html.
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Method Macro-F1 Accuracy
VectorSLU-Primary 49.10 66.45
VectorSLU-Contrastive 49.54 70.45
JAIST (best) 57.19 72.52
Baseline 22.36 50.46

Table 2: Results for the English answer selection task.

Method Macro-F1 Accuracy
VectorSLU-Primary 70.99 76.32
VectorSLU-Contrastive 73.18 78.12
QCRI (best) 78.55 83.02
Baseline 24.03 56.34

Table 3: Results for the Arabic answer selection task.

the rank-based and text-based features. Interest-
ingly, VectorSLU-Contrastive leads to a better per-
formance than VectorSLU-Primary. The lower per-
formance of VectorSLU-Primary could be due to the
high overlap between text-based features in differ-
ent classes that can clearly mislead classifiers. For
example, A1, A2 and A3 (see Section 1) all have a
considerable word overlap with their question, while
only A2 is a good answer. The last two rows of the
table are respectively related to the best performance
among all submissions and the majority class base-
line that always predicts good.

Arabic answer selection Our approach for an-
swer selection in Arabic ranked 2nd out of 4 sub-
missions. Table 3 shows the results. In these ex-
periments, we employ all features listed in Table 1
except for yes/no/probably-based features, since the
Arabic task does not include YES/NO answer infer-
ence. Vectors were trained from the Arabic Giga-
word (Linguistic Data Consortium, 2011). We found
lemma vectors to work better than token vectors.

We computed ranking scores with SVM Rank
for both VectorSLU-contrastive and VectorSLU-
Primary. In the case of VectorSLU-contrastive, we
used these scores to predict labels according to the
following heuristic: the top scoring answer is la-
beled as direct, the second scoring answer as re-
lated, and all other answers as irrelevant. This de-
cision mechanism is based on the distribution in the
training and development data, and proved to work
well on the test data. However, for our primary

Method Macro-F1 Accuracy
VectorSLU-Primary (best) 63.70 72.00
VectorSLU-Contrastive 61.90 68.00
Baseline 25.00 60.00

Table 4: Results for the English YES/NO inference task.

submission we were interested in a more principled
mechanism. Thus, in the VectorSLU-primary system
we computed 10 extra classification features from
the ranking scores. These features are used to pro-
vide prior knowledge about relative ranking of an-
swers with respect to their corresponding questions.
To compute these features, we first rank answers
with respect to questions and then scale the resul-
tant scores into the [0,1] range. We then consider
10 binary features that indicate whether the score of
each input answer is the range of [0,0.1), [0.1,0.2),
..., [0.9,1), respectively. Note that each feature vec-
tor contains exactly one 1 and nine 0s.

The last two rows of the table are related to the
best performance and the majority class baseline that
always predicts irrelevant.

English YES/NO inference For the indirect
YES/NO answer inference task, we achieve the best
performance and ranked 1st out of 8 submissions.
Table 4 shows the results. VectorSLU-Primary and
VectorSLU-Contrastive have the same definition as
in Table 2. Both approaches with or without the text-
based features outperform the baseline that always
predicts yes as the majority class and other submis-
sions. This indicates the effectiveness of the vector-
based features.

4 Related Work

We are not aware of any previous CQA work us-
ing continuous word vectors. Our vector features
were somewhat motivated by existing text-based
features, taken from the QCRI baseline system, re-
placing text-similarity heuristics with cosine simi-
larity. Some of the approaches to classifying an-
swers can be found in the general CQA literature,
such as (Toba et al., 2014; Bian et al., 2008; Liu et
al., 2008).
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5 Conclusion

In summary, we represented words, phrases, sen-
tences and whole questions and answers in vector
space, and computed various features from them for
a classifier, for both English and Arabic. We showed
the utility of these vector-based features for address-
ing the answer selection and the YES/NO answer
inference tasks in community question answering.
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