

Harvard John A. Paulson School of Engineering and Applied Sciences

On Adversarial Removal of Hypothesis-only Bias in Natural Language Inference

Yonatan Belinkov*, Adam Poliak*, Benjamin Van Durme, Stuart Shieber, Alexander Rush

> *SEM, Minneapolis, MN June 7, 2019

Co-Authors

Yonatan Belinkov

Adam Poliak

Benjamin Van Durme

Alexander Rush

Stuart Shieber

Background

Premise: The brown cat ran

Hypothesis: The animal moved

Premise: The brown cat ran

Hypothesis: The animal moved

entailment neutral contradiction

Premise: The brown cat ran

Hypothesis: The animal moved

Premise: *The brown cat ran*

Hypothesis: *The animal moved*

Premise: *The brown cat ran* Hypothesis: *The animal moved*

Hypothesis Only Baselines in Natural Language Inference

Adam Poliak¹ Jason Naradowsky¹ Aparajita Haldar^{1,2} Rachel Rudinger¹ Benjamin Van Durme¹ ¹Johns Hopkins University ²BITS Pilani, Goa Campus, India {azpoliak, vandurme}@cs.jhu.edu {narad, ahaldar1, rudinger}@jhu.edu

Abstract

*SEM 2018

We propose a hypothesis only baseline for diagnosing Natural Language Inference (NLI). Especially when an NLI dataset assumes inference is occurring based purely on the relationship between a context and a hypothesis, it follows that assessing entailment relations while ignoring the provided context is a degenerate solution. Yet, through experiments on ten distinct NLI datasets, we find that this approach, which we refer to as a hypothesis-only model, is able to significantly outperform a majorityclass baseline across a number of NLI datasets. Our analysis suggests that statistical irregularities may allow a model to perform NLI in some datasets beyond what should be achievable without access to the context.

Figure 1: (1a) shows a typical NLI model that encodes the premise and hypothesis sentences into a vector space to classify the sentence pair. (1b) shows our hypothesis-only baseline method that ignores the premise and only encodes the hypothesis sentence.

measurily the sufficient conditions of such a claim

Hypothesis Only NLI

Hypothesis Only NLI

Hypothesis Only NLI

Hypothesis Only NLI Premise:

Hypothesis: A woman is sleeping

entailment neutral contradiction

Hypothesis Only NLI Premise:

Hypothesis: A woman is sleeping

entailment neutral

SNLI Results

A woman is sleeping

Premises:

A woman sings a song while playing

piano

Premises:

This woman is laughing at her baby shower

Premises:

A woman with glasses is playing jenga

Why is she sleeping?

Studies in eliciting norming data are prone to repeated responses across subjects

(see McRae et al. (2005) and discussion in §2 of Zhang et. al. (2017)'s Ordinal Common-sense Inference)

Problem:

Hypothesis-only biases mean that models may not learn the true relationship between premise and hypothesis

How to handle such biases?

Strategies for dealing with dataset biases

- Construct new datasets (Sharma et al. 2018)
 - **\$\$\$**
 - More bias

Strategies for dealing with dataset biases

- Construct new datasets (Sharma et al. 2018)
 - **\$\$\$**
 - More bias
- Filter "easy" examples (Gururangan et al. 2018)
 - Hard to scale
 - $\circ \quad May \ still \ have \ biases \ (see \ SWAG \rightarrow \mathsf{BERT} \rightarrow \mathsf{HellaSWAG})$

Strategies for dealing with dataset biases

- Construct new datasets (Sharma et al. 2018)
 - **\$\$\$**
 - More bias
- Filter "easy" examples (Gururangan et al. 2018)
 - Hard to scale
 - $\circ \quad May \ still \ have \ biases \ (see \ SWAG \rightarrow \mathsf{BERT} \rightarrow \mathsf{HellaSWAG})$
- Forgo datasets with known biases
 - Not all bias is bad
 - Biased datasets may have other useful information

Our solution: Design architectures that facilitate learning less biased representations

Adversarial Learning to the Rescue

NLI Model Components

g – classifier

f - encoder

Baseline NLI Model

Method 2 – Adv. Training Examples

Method 2 – Adv. Training Examples

Results & Analysis

What happens to model performance?

Degradation in domain

Degradation in domain

Are biases removed?

Hidden biases - Adversarial Classifier

Hidden biases - Adversarial Classifier

Hidden biases - Adversarial Classifier

Hidden biases - Adversarial Data

Hidden biases - Adversarial Data

What happens to specific biases?

ndicator Words		Word	Score	Freq
		sleeping	0.88	108
		driving	0.81	53
	Contradiction	Nobody	1.00	52
		alone	0.90	50
	nobody	cat	0.84	49
	sleening	asleep	0.91	43
	no	no	0.84	31
	no	empty	0.93	28
	tv	eats	0.83	24
	cat	sleeps	0.95	20

Gururangan et al (*NAACL 2018) Poliak et al (*SEM 2018)

Decrease in correlation with contradiction

What is this good for?

Are less biased models more transferable?

Don't Take the Premise for Granted: Mitigating Artifacts in Natural Language Inference

Natural Language Inference (NLI) datasets often contain hypothesis-only biases—artifacts that allow models to achieve non-trivial performance without learning whether a premise entails a hypothesis. We propose two probabilistic methods to build models that are NLI datasets contain biases, or annotation artifacts, that enable models to perform surprisingly well using only the hypothesis, without learning the relationship between two texts (Gururangan et al., 2018; Poliak et al., 2018; Tsuchiya, 2018).³ For instance, in some datasets, negation words like "not" and "nobody" are often associated with a re-

Method 2 – Adv. Training Examples

100

Conclusions

- Adversarial learning may help combat hypothesis-side biases in NLI
- Applicable to other tasks with one-sided biases: reading comprehension, visual question answering, etc.

Adversarial Regularization for Visual Question Answering: Strengths, Shortcomings, and Side Effects

Gabriel Grand¹ and **Yonatan Belinkov^{1,2}**^{Siv}
²⁰¹⁹
¹Harvard John A. Paulson School of Engineering and Applied Sci
²MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA, USA

ggrand@alumni.harvard.edu, belinkov@seas.harvard.edu

Abstract

Visual question answering (VQA) models have been shown to over-rely on linguistic biases in VQA datasets, answering quesEfforts to address this problem have mainly focused on constructing more balanced datasets (Zhang et al., 2016; Goyal et al., 2017; Johnson et al., 2017; Chao et al., 2018). However, any benchmark that involves crowdsourced data

Conclusions

- Adversarial learning may help combat hypothesis-side biases in NLI
- Applicable to other tasks with one-sided biases
- May reduce the amount of bias and improve transferability
- But, the methods should be handled with care
 - Not all bias may be removed Ο
 - The goal matters: some bias may be helpful in certain scenarios Ο

Acknowledgements

HARVARD

Mind Brain Behavior human language technology

