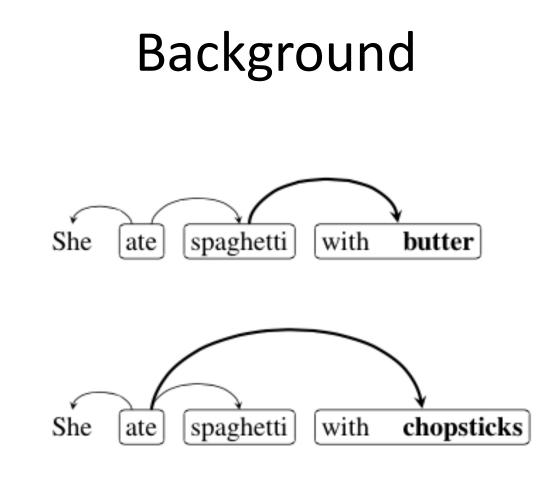
Compositional Architectures and Word Vector Representations for PP Attachment

Yonatan Belinkov, Tao Lei, Regina Barzilay, Amir Globerson

NAACL 2015 (Published at TACL)



Applications

- PP attachments: major source of errors in syntactic parsing (Kummerfeld et al. 2012)
- Syntactic parsing: a core NLP module
 - Named entity recognition
 - Machine translation
 - Co-reference resolution
- Relation extraction

Historical Development

• Classic NLP task since the 1990s

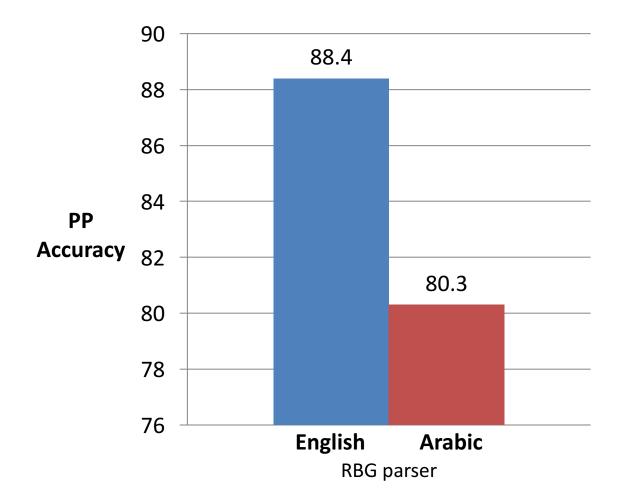
Historical Development

- Classic NLP task since the 1990s
- Improvement over time (Kummerfeld et al. 2012)
 - 32% error reduction in 15 years (since Collins 1997)

Historical Development

- Classic NLP task since the 1990s
- Improvement over time (Kummerfeld et al. 2012)
 32% error reduction in 15 years (since Collins 1997)
- But: still a major challenge in parsing
 - Largest source of errors across a range of parsers

Problem goes beyond English



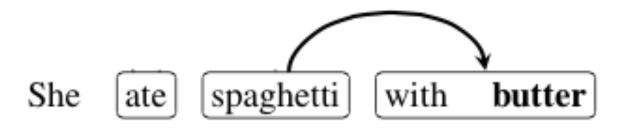
Previous Work

- Problem formulation:
 - Constrained binary classifiers (Ratnaparkhi 1994; ...)
 - Full-scale parsers
- Consider an un-constrained PP scenario
- Information sources:
 - Hand-crafted knowledge (Gamallo et al. 2003; ...)
 - Statistics from raw text (Volk 2002), word vector representations (Šuster 2012; Socher et al. 2013)

Combine word vectors with other representations

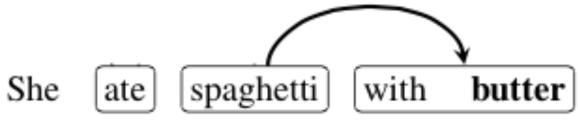
Setup

 Training: sentences, prepositions (with), children (butter), heads (spaghetti)

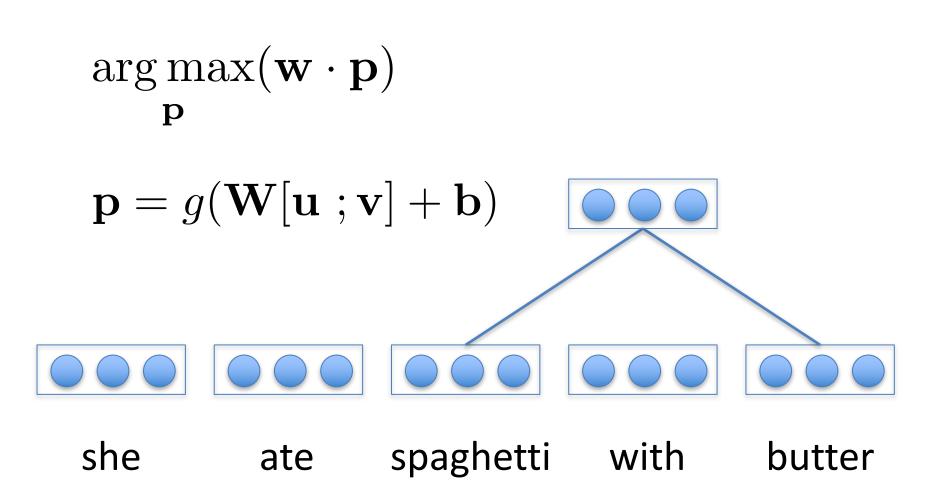


Setup

 Training: sentences, prepositions (with), children (butter), heads (spaghetti)



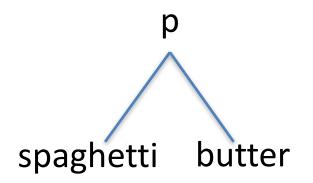
- Testing:
 - Given: sentences, prepositions, children
 - Predict: heads



• Represent words as vectors: $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

- Represent words as vectors: $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$
- Compose with a neural network:

$$\mathbf{p} = g(\mathbf{W}[\mathbf{u} ; \mathbf{v}] + \mathbf{b})$$



- Represent words as vectors: $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$
- Compose with a neural network:

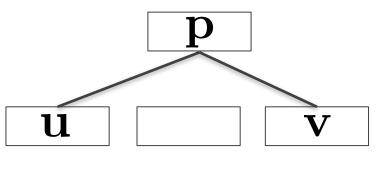
$$\mathbf{p} = g(\mathbf{W}[\mathbf{u} ; \mathbf{v}] + \mathbf{b})$$

Score parent: $\arg \max(\mathbf{w} \cdot \mathbf{p})$
p p
spaghetti butter

- Represent word as vectors: $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$
- Compose vectors with neural network:

$$\mathbf{p} = g(\mathbf{W}[\mathbf{u} ; \mathbf{v}] + \mathbf{b})$$

Score parent: $\arg \max(\mathbf{w} \cdot \mathbf{p})$



spaghetti with butter

Example

She ate spaghetti with butter

Example

• Candidate *spaghetti*

She ate *spaghetti* with butter

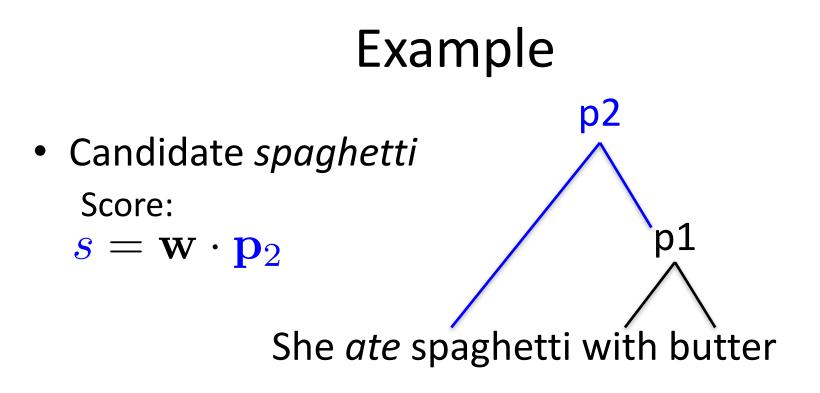
Example

• Candidate *spaghetti*

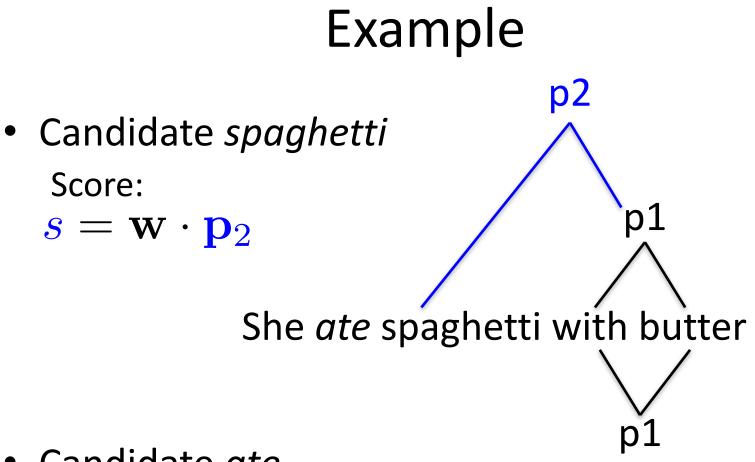
p1 She ate *spaghetti* with butter

• Candidate *spaghetti* She ate *spaghetti* with butter

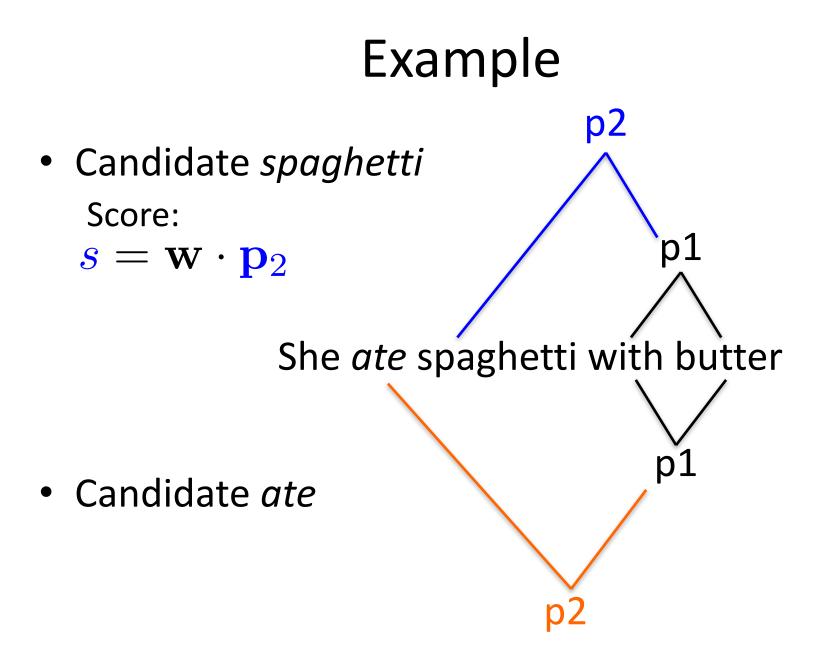
• Candidate *spaghetti* Score: $s = \mathbf{w} \cdot \mathbf{p}_2$ She ate *spaghetti* with butter

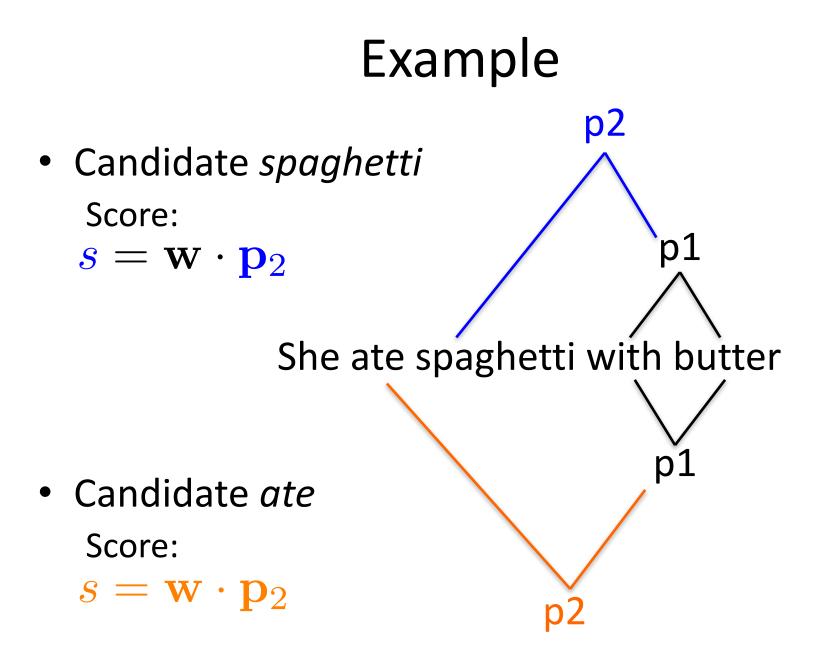


• Candidate *ate*



• Candidate *ate*

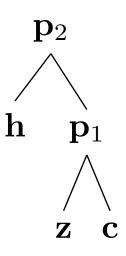




Composition Architectures

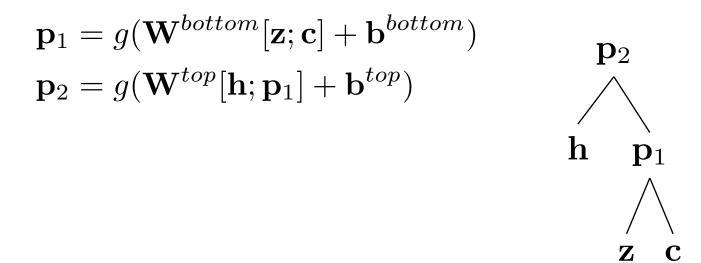
Model	Equations	Structure
Head-Child (HC)	$\mathbf{p} = g(\mathbf{W}[\mathbf{h}; \mathbf{c}] + \mathbf{b})$	p h c
Head-Prep-Child (HPC)	$\mathbf{p}_1 = g(\mathbf{W}[\mathbf{z}; \mathbf{c}] + \mathbf{b})$ $\mathbf{p}_2 = g(\mathbf{W}[\mathbf{h}; \mathbf{p}_1] + \mathbf{b})$	$\begin{array}{c c} \mathbf{p}_2 \\ & & \\ \mathbf{h} & \mathbf{p}_1 \\ & & \\ & & \\ & \mathbf{z} & \mathbf{c} \end{array}$
Head-Prep-Child-Ternary (HPCT)	$\mathbf{p} = g(\mathbf{W}^{Tern}[\mathbf{h}; \mathbf{z}; \mathbf{c}] + \mathbf{b})$	p h z c

• Granularity



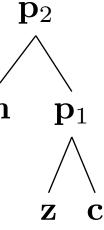
• Granularity

Different matrices for different compositions



- Granularity
 - Different matrices for different compositions

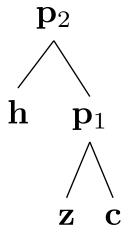
 $\begin{aligned} \mathbf{p}_1 &= g(\mathbf{W}^{bottom}[\mathbf{z};\mathbf{c}] + \mathbf{b}^{bottom}) \\ \mathbf{p}_2 &= g(\mathbf{W}^{top}[\mathbf{h};\mathbf{p}_1] + \mathbf{b}^{top}) \\ - & \mathsf{Distance-dependent\ matrices} & \mathbf{h} \\ \mathbf{p}_2 &= g(\mathbf{W}^d[\mathbf{h};\mathbf{p}_1] + \mathbf{b}^d) \end{aligned}$



- Granularity
 - Different matrices for different compositions

$$\mathbf{p}_1 = g(\mathbf{W}^{bottom}[\mathbf{z}; \mathbf{c}] + \mathbf{b}^{bottom})$$
$$\mathbf{p}_2 = g(\mathbf{W}^{top}[\mathbf{h}; \mathbf{p}_1] + \mathbf{b}^{top})$$
• Distance-dependent matrices

$$\mathbf{p}_2 = g(\mathbf{W}^d[\mathbf{h};\mathbf{p}_1] + \mathbf{b}^d)$$



- Context
 - Concatenate vectors for neighbors

Training

 Given a corpus of pairs of sentences and attachments, {x⁽ⁱ⁾, y⁽ⁱ⁾}, minimize:

$$J(\theta) = \sum_{i=1}^{T} \sum_{z \in PR(x^{(i)})} \max_{h} \left[s(x^{(i)}, z, h; \theta) - s(x^{(i)}, z, y^{(i)}(z); \theta) + \Delta(h, y^{(i)}(z)) \right]$$

Training

 Given a corpus of pairs of sentences and attachments, {x⁽ⁱ⁾, y⁽ⁱ⁾}, minimize:

$$J(\theta) = \sum_{i=1}^{T} \sum_{z \in PR(x^{(i)})} \max_{h} \left[s(x^{(i)}, z, h; \theta) - s(x^{(i)}, z, y^{(i)}(z); \theta) + \Delta(h, y^{(i)}(z)) \right]$$

- Optimization: AdaGrad (Duchi et al. 2011)
- Regularization: Dropout (Hinton et al. 2012)

AdaGrad

• Adaptive gradient descent (Duchi et al. 2011)

• Update for parameter θ_i at time *t*+1:

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{\sum_{t'=1}^{t} g_{t',i}^2}} g_{t,i}$$

AdaGrad

• Guarantees asymptotically sub-linear regret:

$$R(T) = \sum_{t=1}^{T} \left[f_t(\theta_t) - f_t(\theta^*) \right]$$

- Where:
 - $-\theta^*$ is the optimal parameter set
 - -f is the objective function

Dropout

Regularization for neural networks (Hinton et al. 2012)

• Randomly dropout units from each layer:

 $\tilde{\mathbf{p}} = \mathbf{p} \odot \mathbf{r}$

- r = random Bernoulli variable w/ parameter ρ
- In testing, scale matrices:

$$\tilde{\mathbf{W}} = \rho \mathbf{W}$$

Word Vector Representations

- Initial word vectors:
 - Trained from raw texts
 - Skip-gram model (Mikolov et al. 2013)
 - Similar words have similar vectors

Skip-gram Model

• For a corpus with T words w_1, \dots, w_T , maximize:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

- where: $p(w_{t+j}|w_t) = \frac{\exp(v_{w_{t+j}}^{\prime T} v_{w_t})}{\sum_{w=1}^{W} \exp(v_w^{\prime T} v_{w_t})}$
- v_w, v'_w input/output of neural network
- With some additional approximations

Alternative Representations

• Relearn vectors during training

Backpropagate errors from supervised data

Alternative Representations

- Relearn vectors during training

 Backpropagate errors from supervised data
- Enrich vectors with external resources

– WordNet, VerbNet, POS

Alternative Representations

- Relearn vectors during training

 Backpropagate errors from supervised data
- Enrich vectors with external resources

 WordNet, VerbNet, POS
- Exploit syntactic context
 - Dependency-based word vectors
 (Bansal et al. 2014, Levy and Goldberg 2014)

	Arabic		English	
	Train	Test	Train	Test
# Attachments	42,387	3,197	35,359	1,951
Avg # Candidates	4.5	4.3	3.7	3.6
Vocab sizes				
Prepositions	13	10	72	46
Heads	8,225	2,936	10,395	2,133
Children	4,222	1,424	5,504	983

	Arabic		English	
	Train	Test	Train	Test
# Attachments	42,387	3,197	35,359	1,951
Avg # Candidates	4.5	4.3	3.7	3.6
Vocab sizes				
Prepositions	13	10	72	46
Heads	8,225	2,936	10,395	2,133
Children	4,222	1,424	5,504	983

	Arabic		English	
	Train	Test	Train	Test
# Attachments	42,387	3,197	35,359	1,951
Avg # Candidates	4.5	4.3	3.7	3.6
Vocab sizes				
Prepositions	13	10	72	46
Heads	8,225	2,936	10,395	2,133
Children	4,222	1,424	5,504	983

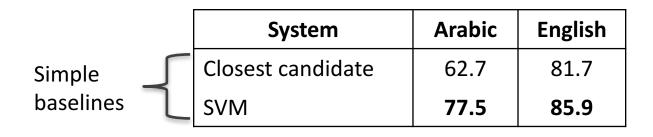
	Arabic		English	
	Train	Test	Train	Test
# Attachments	42,387	3,197	35,359	1,951
Avg # Candidates	4.5	4.3	3.7	3.6
Vocab sizes				
Prepositions	13	10	72	46
Heads	8,225	2,936	10,395	2,133
Children	4,222	1,424	5,504	983

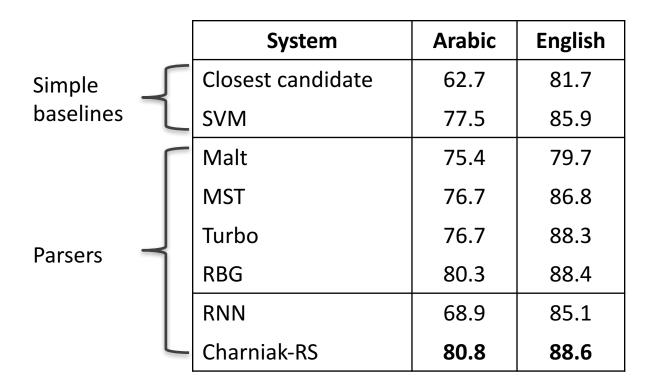
Baselines

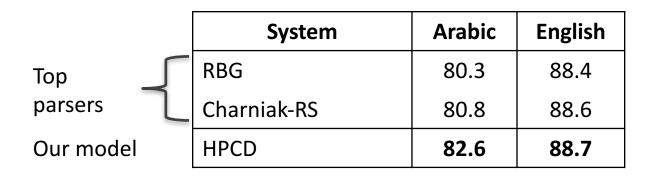
- Closest candidate
- SVM

Baselines

- Closest candidate
- SVM
- Parsers
 - Malt (Niver et al. 2006)
 - MST (McDonald et al. 2005)
 - Turbo (Martins et al. 2010, 2013)
 - RBG (Lei et al. 2014)
 - RNN (Socher et al. 2013)
 - Charniak-RS (McClosky et al. 2006)







	System	Arabic	English
Тор	RBG	80.3	88.4
parsers	Charniak-RS	80.8	88.6
Our model	HPCD	82.6	88.7
	RBG + HPCD	82.7	90.1

Results (parsing)

• Add PP predictions to a state-of-the-art parser

• Binary feature for each predicted attachment

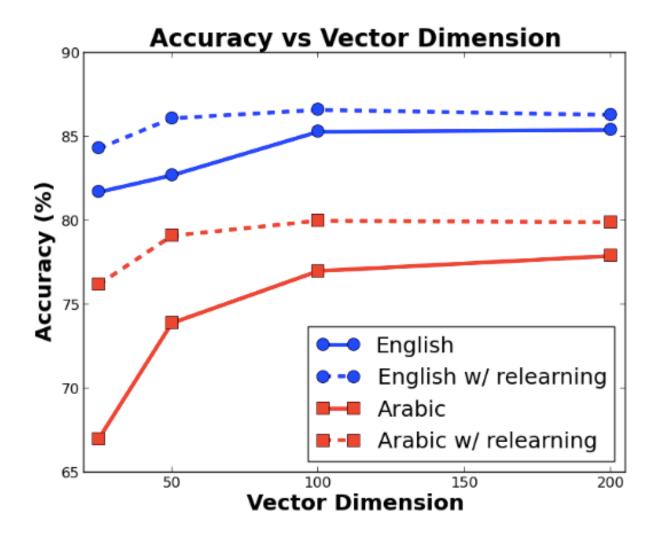
System	Arabic	English
RBG	87.70	93.96
RBG + predicted PP	87.95	94.05

Contribution of Model Components

- Word representations
 - Relearning word vectors
 - Enriching word vectors
 - Using syntactic word vectors

• Composition architectures

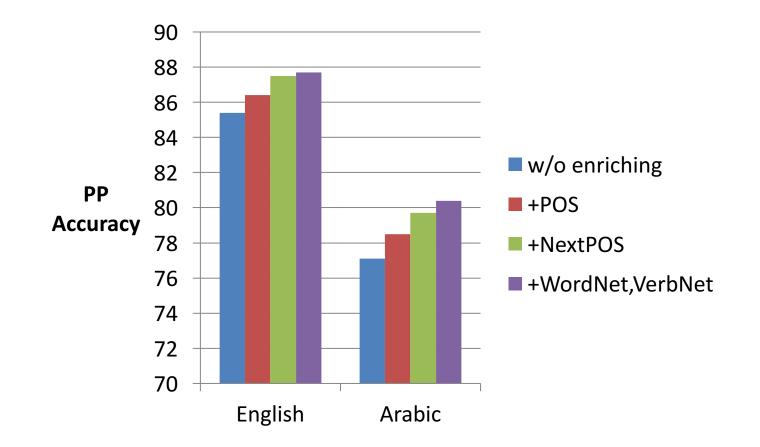
Effect of Relearning Word Vectors



Effect of Enriching Word Vectors

Representation	Arabic	English
w/o enriching	77.1	85.4
w/ enriching		
+POS	78.5	86.4
+NextPOS	79.7	87.5
+WordNet+VerbNet	80.4	87.7
w/ enriching+relearning	81.7	88.1
w/ enriching+relearning+syntactic	82.6	88.7

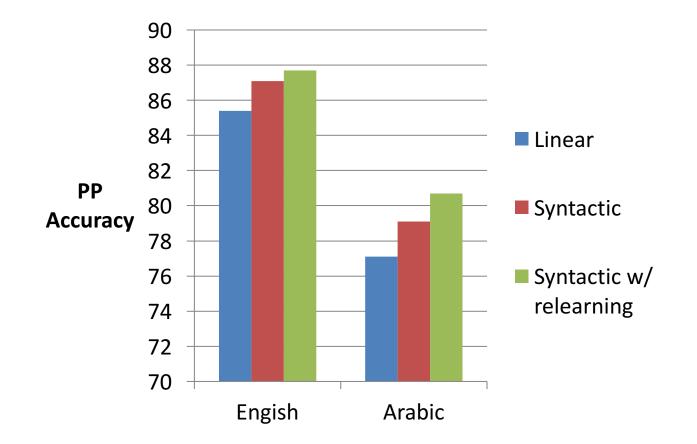
Effect of Enriching Word Vectors



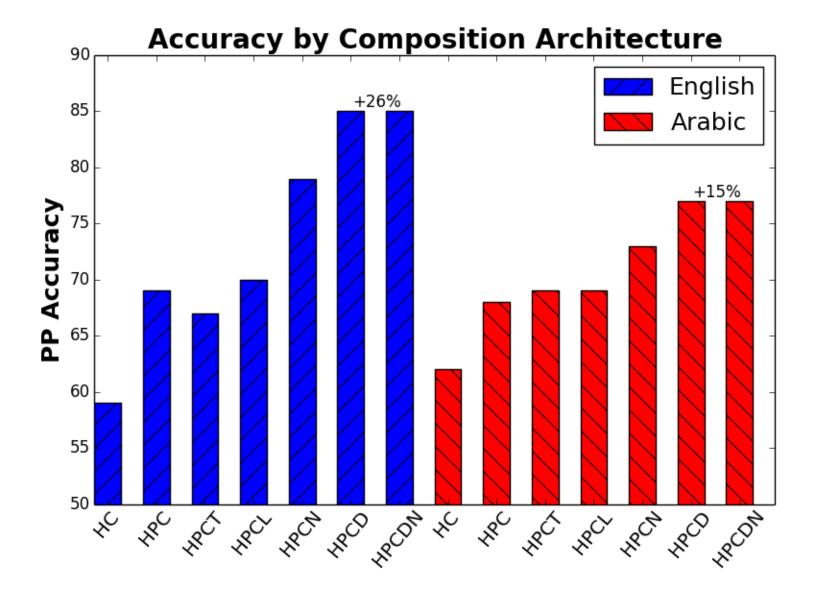
Effect of Syntactic Word Vectors

Representation	Arabic	English
Linear (standard)	77.1	85.4
Syntactic	79.1	87.1
Syntactic w/ relearning	80.7	87.7

Effect of Syntactic Word Vectors



Effect of Composition Architectures



Contributions

- Develop a compositional neural network model dedicated for PP attachment
- Explore utility of different word vector representations
- Improve performance of a state-of-the-art parser
- Code and data: http://groups.csail.mit.edu/rbg/code/pp