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In feature-rich NLP systems, one could in the-
ory examine how different features are used
by the system, in contrast to end-to-end neu-
ral networks that are thought to be opaque. As
neural networks replace many of their feature-
rich counterparts, researchers seek to ana-
lyze and evaluate neural networks in novel and
more fine-grained ways.

In this survey paper, we:

= Review analysis methods in neural NLP.
= Categorize methods by prominent trends.
= Highlight limitations and future directions.

Visualization

Visualization is a valuable tool for analyzing neu-
ral networks; usually done on individual examples.

They also violate the relevant Security Council resolutions , in

ity ,
] ! ! particular resolution 2216 ( 2015 ) , and are consistent with the
C |\/a |O n S. Houthis &apos; total rejection of the said resolution
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= Attention weights.

= Saliency of input
features.

= Clusters of
embeddings.

= Online tools: LSTMVis,
Seq25eq-Vis, NeuroX,
BertViz, etc.

Bahdanau et al. (2014)

Limitations: evaluation
= Evaluation is difficult and usually qualitative.

= Exceptions: human evaluation of which
visualization is more accurate or credible.
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Finding linguistic information in neural models

Aprimary goalistodetermine what linguistic informationis captured in neu-
ral networks when they are trained on various tasks.

= Methods: Probing tasks: (1) train neural model; (2) generate
representations; (3) train a classifier to predict a linguistic property.

= Linguistic phenomena: phonology, morphology, syntax, semantics, etc.
= Different network components: embeddings, states, attention, etc.
= Example: predict POS tags from hidden states on a neural M T encoder.

Some insights

= Networks learn a substantial amount of linguistic information, especially
about frequent properties, less so about rare cases.

= Hierarchical representations: lower layers capture simpler properties
than higher layers. But, this may depend on architecture and task.

Limitations: methodological issues

= Correlation # causation: Predictability of a property does not entail that
the end model is using it.

= The nature of the predictor/classifier is rarely discussed.

Challenge sets

Most benchmarks evaluate performance in the average case. Challenge sets
(or test suites) evaluate systems systematically on fine-grained phenomena.

= Task: mostly NLI/entailment and MT; also word/sentence embeddings.

= Linguistic phenomena: earlier work exhaustive, recent more focused

= Languages: Almost only English, with exceptions in M T evaluation.

= Scale: from small and manually constructed to large and automatic.

= Methods: modify benchmarks, design templates, form contrastive pairs.

Limitations
= Poor language and task coverage.
= Conflict: Should systems perform well in extreme or average cases?
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Adversarial examples

Given a neural network model f and an input example x, generate an ad-
versarial example 2’ that will have a minimal distance from x, while being
assigned a different label by f:

st. flx)=1,f(z")=1U1#1

Problems with discrete input: measuring and minimizing ||x — 2/||.

min ||z — 2'||
a:./

= Adversary’s knowledge: In white-box attacks, word embeddings are
perturbed, but the result may not be a known word. In black-box
attacks, texts are usually edited (e.g., typos).

= Attack specificity: Targeted attacks are rare (being white-box).
= Linguistic unit: usually characters or words.

= Task: text classification, reading comprehension, M T. Less work on
low-level tasks.

Limitations: coherence & perturbation measurement

= Need to apply constraints on few edit operations or filter
replacements by semantic similarity.

= Few human evaluations of grammaticality or similarity of adversarial
examples to original ones. More are needed.

Explaining predictions

Explaining specific predictions is important for increased accountability.
Current solutions are limited:

= Generate explanations along with the prediction; requires manual
annotations of explanations.

= Treat parts of input as explanation; ignores internal computations.

Conclusion

= Still much work to do in analysis of neural NLP.

= Online appendix has tables with categorizations of
many studies. Contributions welcome!




