
Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects,
pages 145–152, Osaka, Japan, December 12 2016.

A Character-level Convolutional Neural Network

for Distinguishing Similar Languages and Dialects

Yonatan Belinkov and James Glass

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

{belinkov, glass}@mit.edu

Abstract

Discriminating between closely-related language varieties is considered a challenging and im-
portant task. This paper describes our submission to the DSL 2016 shared-task, which included
two sub-tasks: one on discriminating similar languages and one on identifying Arabic dialects.
We developed a character-level neural network for this task. Given a sequence of characters, our
model embeds each character in vector space, runs the sequence through multiple convolutions
with different filter widths, and pools the convolutional representations to obtain a hidden vector
representation of the text that is used for predicting the language or dialect. We primarily focused
on the Arabic dialect identification task and obtained an F1 score of 0.4834, ranking 6th out of
18 participants. We also analyze errors made by our system on the Arabic data in some detail,
and point to challenges such an approach is faced with.1

1 Introduction

Automatic language identification is an important first step in many applications. For many languages
and texts, this is a fairly easy step that can be solved with familiar methods like n-gram language models.
However, distinguishing between similar languages is not so easy. The shared-task on discriminating
between similar languages (DSL) has offered a test bed for evaluating models on this task since 2014 (Tan
et al., 2014; Zampieri et al., 2014; Zampieri et al., 2015). The 2016 shared-task included two sub-tasks:
(1) discriminating between similar languages from several groups; and (2) discriminating between Arabic
dialects (Malmasi et al., 2016). The following language varieties were considered in sub-task 1: Bosnian,
Croatian, and Serbian; Malay and Indonesian; Portuguese of Brazil and Portugal; Spanish of Argentina,
Mexico, and Spain; and French of France and Canada. In sub-task 2, the following Arabic varieties were
considered: Levantine, Gulf, Egyptian, North African, and Modern Standard Arabic (MSA).

The training datasets released in the two sub-tasks were very different. Sub-task 1 was comprised of
journalistic texts and included training and development sets. Sub-task 2 had automatic transcriptions
of spoken recordings and included only a training set. This was the first time DSL has offered a task
on Arabic dialects. The shared-task also included an open track that allows additional resources, but we
have only participated in the closed track.

Previous DSL competitions attracted a variety of methods, achieving very high results with accuracies
of over 95%. Most teams used character and word n-grams with various classifiers. One team in 2015
used vector embeddings of words and sentences (Franco-Salvador et al., 2015), achieving very good,
though not state-of-the-art results. They trained unsupervised vectors and fed them as input to a classifier.
Here we are interested in character-level neural network models. Such models showed recent success
in other tasks (Kim et al., 2016, among many others). The basic question we ask is this: how well can
a character-level neural network perform on this task without the notion of a word? To answer this, our
model takes as input a sequence of characters, embeds them in vector space, and generates a high-level

1The code for this work is available at https://github.com/boknilev/dsl-char-cnn.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/

145

representation of the sequence through multiple convolutional layers. At the top of the network, we
output a probability distribution over labels and backpropagate errors, such that the entire network can
be learned end-to-end.

We experimented with several configurations of convolutional layers, focusing on Arabic dialect iden-
tification (sub-task 2). We also participated in sub-task 1, but have not tuned our system to this scenario.
Our best system obtained an F1 score of 0.4834 on the Arabic sub-task, ranking 6th out of 18 participants.
The same system did not perform well on sub-task 1 (ranked 2nd to last), although we have not spent
much time on adapting it to this task. In the next section, we discuss related work on identifying similar
languages and dialects. We then present our methodology and results, and conclude with a discussion
and a short error analysis for the Arabic system that sheds light on potential sources of errors.

2 Related Work

Discriminating similar languages and dialects has been the topic of two previous iterations of the DSL
task (Zampieri et al., 2014; Zampieri et al., 2015). The previous competitions proved that despite very
good performance (over 95% accuracy), it is still a non-trivial task that is considerably more difficult
than identifying unrelated languages. Admittedly, even humans have a hard time identifying the correct
language in certain cases, as observed by Goutte et al. (2016). The previous shared-task reports contain
detailed information on the task, related work, and participating systems. Here we only highlight a few
relevant trends.

In terms of features, the majority of the groups in previous years used sequences of characters and
words. A notable exception is the use of word white-lists by Porta and Sancho (2014). Different learning
algorithms were used for this task, most commonly linear SVMs or maximum entropy models. Some
groups formulated a two-step classification model: first predicting the language group and then predicting
an individual language. For simplicity, we only trained a single multi-class classification model, although
we speculate that a two-step process could improve our results. For Arabic dialect identification (sub-task
2), one could first distinguish MSA from all the other dialects, and then identify the specific dialect.

Last year, Franco-Salvador et al. (2015) used vector embeddings of words and sentences, achieving
very good results, though not state-of-the-art. They trained unsupervised word vectors and fed them as
input to a classifier. In contrast, we build an end-to-end neural network over character sequences, and
train character embeddings along with other parameters of the network. Using character embeddings is
particularly appealing for this task given the importance of character n-gram features in previous work.
In light of the recent success of character-level neural networks in various language processing and
understanding tasks (Santos and Zadrozny, 2014; Zhang et al., 2015; Luong and Manning, 2016; Kim et
al., 2016), we were interested to see how far one can go on this task without any word-level information.

Finally, this year’s task offered a sub-task on Arabic dialect identification. It is unique in that the
texts are automatic transcriptions generated by a speech recognizer. Previous work on Arabic dialect
identification mostly used written texts (Zaidan and Callison-Burch, 2014; Malmasi et al., 2015) or
speech recordings, with access to the acoustic signal (Biadsy et al., 2009; Ali et al., 2016). For example,
Ali et al. (2016) exploited both acoustic and ASR-based features, finding that their combination works
best. Working with automatic transcriptions obscures many dialectal differences (e.g. in phonology) and
leads to inevitable errors. Still, we were interested to see how well a character-level neural network can
perform on this task, without access to acoustic features.

3 Methodology

We formulate the task as a multi-class classification problem, where each language (or dialect) is a
separate class. We do not consider two-step classification, although this was found useful in previous
work (Zampieri et al., 2015). Formally, given a collection of texts and associated labels, {t(i), l(i)},
we need to find a predictor f : t ! l. Our predictor is a neural network over character sequences.
Let t := c = c1, · · · , cL denote a sequence of characters, where L is a maximum length that we set
empirically. Longer texts are truncated and shorter ones are padded with a special PAD symbol. Each

146

character c in the alphabet is represented as a real-valued vector xc 2 Rdemb . This character embedding
is learned during training.

Our neural network has the following structure:

• Input layer: mapping the character sequence c to a vector sequence x. The embedding layer is
followed by dropout.

• Convolutional layers: multiple parallel convolutional layers, mapping the vector sequence x to
a hidden sequence h. We use filters that slide over character vectors, similarly to Kim (2014)’s
CNN over words. A single filter k 2 Rwdemb of width w creates a new feature fi 2 R by:
fi = k · xi:i+w�1 + b, where xi:i+w�1 is a concatenation of xi, ...xi+w�1 and b 2 R is a bias term.
Each convolution is followed by a Rectified Linear Unit (ReLU) non-linearity (Glorot et al., 2011).
The outputs of all the convolutional layers are concatenated.

• Pooling layer: a max-over-time pooling layer, mapping the vector sequence h to a single hidden
vector h representing the sequence. The size of h is ⌃jnjwj , where there are nj filters of width wj .

• Fully-connected layer: one hidden layer with a ReLU non-linearity and dropout, mapping h to the
final vector representation of the text, h

0.

• Output layer: a softmax layer, mapping h

0 to a probability distribution over labels l.

During training, each sequence is fed into this network to create label predictions. As errors are back-
propagated down the network, the weights at each layer are updated, including the embedding layer.
During testing, the learned weights are used in a forward step to compute a prediction over the labels.
We always take the best predicted label for evaluation.

3.1 Training details and submitted runs

We train the entire network jointly, including the embedding layer. We use the Adam optimizer (Kingma
and Ba, 2014) with the default original parameters to minimize the cross-entropy loss. Training is run
with shuffled mini-batches of size 16 and stopped once the loss on the dev set stops improving; we allow
a patience of 10 epochs. Our implementation is based on Keras (Chollet, 2015) with the TensorFlow
backend (Abadi et al., 2015).

Param Values
⇢emb 0.2, 0.5
⇢fc 0.2, 0.5

L 200, 400, 800
demb 25, 50, 100
dfc 100, 250

Table 1: Tuned hy-
perparameters.

We mostly experimented with the sub-task 2 dataset of Arabic dialects. Since
the official shared-task did not include a dedicated dev set, we randomly allo-
cated 90% of the training set for development. We tuned the following hyperpa-
rameters on this split, shown in Table 1 (chosen parameters in bold): embedding
layer dropout ⇢emb, fully-connected layer dropout ⇢fc, maximum text length L,
character embedding size demb, and fully-connected layer output size dfc. Note
that removing the fully-connected layer led to a small drop in performance.

For the convolutional layers, we experimented with different combinations of
filter widths and number of filters. We started with a single filter width and noticed that a width of 5
characters performs fairly well with enough filters (250). We then added multiple widths, similarly to
a recent character-CNN used in language modeling (Kim et al., 2016). Using multiple widths led to a
small improvement. Our best configuration was: {1⇤50, 2⇤50, 3⇤100, 4⇤100, 5⇤100, 6⇤100, 7⇤100},
where w ⇤ n indicates n filters of width w.

Since the shared-task did not provide a dev set for sub-task 2, we explored several settings in our three
submitted runs:

• Run 1 used 90% of the training set for training and 10% for development.

• Run 2 used 100% of the training for training, but stopped at the same epoch as Run 1.

• Run 3 used 10 different models, each trained on a different random 90%/10% train/dev split, with
a plurality vote among the 10 models to determine the final prediction.

147

Test Set Track Run Accuracy F1 (micro) F1 (macro) F1 (weighted)

A closed Baseline 0.083
A closed run1 0.8042 0.8042 0.8017 0.8017
A closed run2 0.825 0.825 0.8249 0.8249
A closed run3 0.8307 0.8307 0.8299 0.8299

A closed Best 0.8938 0.8938
C closed Baseline 0.2279
C closed run1 0.4487 0.4487 0.4442 0.4449
C closed run2 0.4357 0.4357 0.4178 0.4181
C closed run3 0.4851 0.4851 0.4807 0.4834

C closed Best 0.5117 0.5132

Table 2: Results for our submitted runs. Best results out of our runs are in bold; best overall systems
shown in italics for reference. Refer to the text for a description of runs and baselines.

For the (larger) dataset of sub-task 1, we did not perform any tuning of hyperparameters and used the
same setting as in sub-task 2, except for a larger mini-batch size (64) to speed up training. This was
our Run 1, whereas in Run 2 we used more filter maps, following the setting in (Kim et al., 2016):
{1 ⇤ 50, 2 ⇤ 100, 3 ⇤ 150, 4 ⇤ 200, 5 ⇤ 200, 6 ⇤ 200, 7 ⇤ 200}. Run 3 was the same as Run 2, but with more
hidden units (dfc = 500) and a higher dropout rate (⇢fc = 0.7) in the fully-connected layer.

4 Results

Table 2 shows the results of our submitted runs, along with two baselines: a random baseline for sub-task
1, test set A (a balanced test set), and a majority baseline for sub-task 2, test set C (a slightly unbalanced
test set). We also report results of the best performing systems in the shared-task.

In sub-task 2, test set C, we notice a fairly large difference between our runs. Our best result, with Run
3, used plurality voting among 10 different models trained on 90% of the training data. We chose this
strategy in an effort to avoid overfitting. However, during development we obtained accuracy results of
around 57-60% on a separate train/dev split, so we suspect there was still overfitting of the training set.
With this run our team ranked 6th out of 18 teams according to the official evaluation.

For sub-task 1, test set A, larger models perform somewhat better, due to the larger training set. In
this case we only have a small drop of about 2% in comparison to our performance on the dev set (not
shown). Our system did not perform very well compared to other teams (we ranked 2nd to last), but this
may be expected as we did not tune our system for this dataset.

Figure 1 shows confusion matrices for our best runs. Clearly, the vast majority of the confusion in sub-
task 1 (test set A) comes from languages in the same group, whereas languages from different groups are
rarely confused. The Spanish varieties are the most difficult to distinguish, with F1 scores between 0.57
(Mexican Spanish) and 0.75 (Argentinian Spanish). The South Slavic languages are less confused, with
F1 scores of 0.75-0.83. French and Portuguese languages are easier to distinguish (F1 around 0.90), and
Malay and Indonesian are the least confused (F1 of 0.96-0.97).

Turning to sub-task 2 (test set C), we see much more confusion, as also reflected in the final results
(Table 2). Gulf is the most confusing dialect: true Gulf examples are often predicted as MSA, and true
Levantine and North African examples are wrongly predicted as Gulf relatively frequently. This is also
reflected in a low F1 score of 0.34 for Gulf. The other dialects have higher F1 scores ranging between
0.47 and 0.50, with MSA having an F1 of 0.60, making it the easiest variety to detect.

5 Discussion

In this section we focus on the Arabic dataset (sub-task 2, test set C) and consider some of our findings.
The first issue that should be stressed is the nature of the data. As the texts are automatically gener-
ated speech transcriptions, they contain mistakes that depend on the training data used for the speech

148

(a) Sub-task 1, test set A, Run 3. (b) Sub-task 2, test set C, Run 3.

Figure 1: Confusion matrices for our best runs on test sets A and C. Best viewed in color.

recognizer. This might have a negative effect on the ability to correctly recognize the dialect just from
the transcriptions. For comparison, previous work found that using acoustic features improves dialect
recognition in a similar setting (Ali et al., 2016). Secondly, the transcribed texts use a transliteration
system2 that was designed for written MSA and obscures many dialectal features that are important for
distinguishing Arabic dialects, especially phonological features.

The fact that MSA is confused with dialectal varieties at all may sound surprising at first. However, due
to the writing scheme many of the known differences between MSA and the dialects are not accessible.
In addition, MSA is often mixed with dialectal Arabic in many settings (e.g. news broadcasts), so it is
reasonable to find MSA features in dialectal speech.

Levantine and Gulf dialects are relatively close geographically and linguistically, so confusing one
with the other might be expected. The confusion between Gulf and North African dialects is more
surprising, although there are always parallel innovations in dialects that stem from a mutual ancestor, as
all Arabic dialects do.

Other factors that can play into similarities and differences are local foreign languages, religious ter-
minology, and genre and domain. However, these are aspects that are difficult to tease apart without a
more careful analysis, and they also depend on the data sources and the ASR system.

Error analysis We conclude this discussion with an analysis of several example errors made by our
systems, as shown in Figure 2. These are examples from a dev set that we kept held out during the
development of our system. In each case, we give the true and predicted labels, the text, and a rough
translation. Note that the translations are often questionable due to ASR mistakes and the lack of context.

In the first example, an MSA text is predicted as Levantine, possibly due to the word AllbnAnyp
“Lebanese", whose character sequence could be typical of Levantine texts. There are clear MSA features
like the dual forms hmA and -An, but these are ambigious with dialectal forms that are found in the
training data. Note also the Verb-Subject word order, typical of MSA – such a pattern requires syntactic
knowledge and cannot be easily detected with simple character (or even word) features.

The second error shows an example of a mixed text, containing both dialectal (>h HDrp “yes the
honorable", bdy “I want") and MSA features (hl syHdv “will it happen"). It is an example of mixing that
is common in spoken data and can confuse the model.

In the third example, the form Alm$kwk fyh “doubtful" has a morphological construction that is typical
of MSA. Such a feature is difficult to capture in a character model and might require morphological
knowledge.

In the fourth example, the words AlmAlky and AlhA$my are actually seen most commonly in MSA in
the training data, but they do not contain typical character-sequences. The phrase Al Al, which indicates

2
http://www.qamus.org/transliteration.htm.

149

True Predicted Text Translation
1 MSA Levantine AndlEt AlHrb AllbnAnyp EAm 1975 >Syb

bxybp >ml whmA yrwyAn kyf ynhArwn
wqthA

The Lebanon war erupted in 1975, he was dis-
appointed and they both tell how they deterio-
rated back then

2 MSA Egyptian >h HDrp AlEmyd AlAHtkAk bdy dm$q
AlEASmp AlsyAdyp AlEASmp AlsyAsyp fy
fy >kvr mn mrp wbEmlyp nwEyp kbyrp jdA hl
syHdv AlmnErj fy h*h AlmwAjhp

Yes, the honorable general, the friction, I want
Damascus the sovereign capitol the sovereign
capitol more than once and in a very large high-
quality operation, will the turn take place in this
confrontation

3 MSA Gulf >mA xrjt ElY tlfzywn Aldwlp fy Alywm Al-
tAly lvwrp wqlt lh HAfZ ElY tAryx >ql Al-
wzArp Alywm Thr AlbrlmAn mn AlEDwyAt
Alm$kwk fyh <dY msyrp Al<SlAH wbdA h*A
qbl SlAp AljmEp

But (I) went on the state television the following
day after the revolution and told him, keep the
history at least the ministry today, cleanse the
parliament from the doubtful memberships if(?)
the course of reform and this started before the
Friday prayer

4 MSA North
African

>wlA Al Al Alsyd AlmAlky ytmnY mn TArq
AlhA$my Alxrwj wlA yEwd

First, mister Al-Maliki wants Tariq Al-Hashimi
to exit and not return

5 Egyptian Gulf >nA bEmrnA ftrp mn HyAty snp Al>xyrp
mtEwd ElY wqf Altfrd AHtlAly tEtbr llm-
sjd gryb mn mjls AlwzrA’ wmjls Al$Eb
wAl$wrY wnqAbp AlmHAmyn wxlAfh fkAn
>y wAlAHtjAjyp byt>vr bhA Almsjd b$>n
Al>wDAE

I in my life, time in my life, last year, used to
stop being alone of occupation(?) that is consid-
ered for a mosque close to the cabinet and the
parliament and the council and the bar associa-
tion and behind it, and the protest, the mosque
influences it because of the situation

6 Gulf North
African

lxwAtm Sgyrp fy AlHjm lkn tHtAj lEnAyp
xASA $mAtp ksArp wHtY AlxSm ArtHnA
ElyhA bn$wf h*A Altqryr wnErf mn xlAlh
>kvr En tktlAt Alywm bfqr Aldm AlsyAsAt
mE Alzmyl lwrA

The rings/stamps are of small size but they need
special care malice(?) breaker(?) and even the
discount, we are happy with it, we see this re-
port and through it we know more about the
blocks/fights of today in lack of blood, the poli-
cies with the colleague are backwards

7 North
African

Gulf "$Ahd tglb wAjb |xr mr Ebr EddA mn brnAmjh
<HnA wyAhm lA ymnE xrwj bAlb$r ftzydh
whlA Em lxrwqAt AlHq Al$yx xAld Hqq mEy
lA yglq fyjb hdf AlnAtw bAlAxtyAr mn Altwqf
lA tqAs bqyt Endk nsmH lkl $y’ HtY tqrr trHb

See a must win last time through some of his
programs, we are with them, will not prevent
leaving with someone, and add more to it, and
are now the violations, the truth the Sheikh
Khalid interrogated me, he is not worried, and
the goal of NATO must be to choose to stop,
cannot be compared, still with you, I will per-
mit everything until deciding to welcome

Figure 2: Example errors made by our system on the Arabic data set (sub-task 2). Some translations are
questionable due to quality of transcription and lack of context.

some stuttering, is more common in some of the dialects than in MSA in the training data, but is about
as common in NOR and MSA.

In the fifth example, the word byt>vr “influences" is likely misrecognized, as in Egyptian it would
probably be byt>tr, but an Arabic language model with much MSA in it might push the ASR system
towards the sequence >vr, which in turn is more common in Gulf.

In the seventh example, the phrase <HnA wyAhm “we’re with them" might be more indicative of Gulf,
but it is rare in the training set in both North African and Gulf. bqyt “remained” should have been a good
clue for North African, and indeed it appears in training 5 times as North African and not at all as Gulf.

6 Conclusion

In this work, we explored character-level convolutional neural networks for discriminating between sim-
ilar languages and dialects. We demonstrated that such a model can perform quite well on Arabic dialect
identification, although it does not achieve state-of-the-art results. We also conducted a short analysis of
errors made by our system on the Arabic dataset, pointing to challenges that such a model is faced with.

A natural extension of this work is to combine word-level features in the neural network. White-lists of
words typical of certain dialects might also help, although in preliminary experiments we were not able
to obtain performance gains by adding such features. We are also curious to see how our model would
perform with access to the speech recordings, for example by running it on recognized phone sequences
or by directly incorporating acoustic features. This, however, would require a different preparation of the
dataset, which we hope would be made available in future DSL tasks.

150

Acknowledgments

The authors would like to thank Sergiu Nisioi and Noam Ordan for helpful discussions. This work was
supported by the Qatar Computing Research Institute (QCRI). Any opinions, findings, conclusions, or
recommendations expressed in this paper are those of the authors, and do not necessarily reflect the views
of the funding organizations.

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.

Ahmed Ali, Najim Dehak, Patrick Cardinal, Sameer Khurana, Sree Harsha Yella, James Glass, Peter Bell, and
Steve Renals. 2016. Automatic Dialect Detection in Arabic Broadcast Speech. In Interspeech 2016, pages
2934–2938.

Fadi Biadsy, Julia Hirschberg, and Nizar Habash. 2009. Spoken Arabic Dialect Identification Using Phonotactic
Modeling. In Proceedings of the EACL 2009 Workshop on Computational Approaches to Semitic Languages,
pages 53–61, Athens, Greece.

François Chollet. 2015. Keras. https://github.com/fchollet/keras.

Marc Franco-Salvador, Paolo Rosso, and Francisco Rangel. 2015. Distributed Representations of Words and Doc-
uments for Discriminating Similar Languages. In Proceedings of the Joint Workshop on Language Technology
for Closely Related Languages, Varieties and Dialects (LT4VarDial), pages 11–16, Hissar, Bulgaria.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Rectifier Neural Networks. In Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11), vol-
ume 15, pages 315–323.

Cyril Goutte, Serge LÃl’ger, Shervin Malmasi, and Marcos Zampieri. 2016. Discriminating Similar Languages:
Evaluations and Explorations. In Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC 2016), Portoroz̆, Slovenia.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander Rush. 2016. Character-Aware Neural Language Models.
In AAAI Conference on Artificial Intelligence.

Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751, Doha, Qatar.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Minh-Thang Luong and Christopher D Manning. 2016. Achieving Open Vocabulary Neural Machine Translation
with Hybrid Word-Character Models. arXiv preprint arXiv:1604.00788.

Shervin Malmasi, Eshrag Refaee, and Mark Dras. 2015. Arabic Dialect Identification using a Parallel Multidi-
alectal Corpus. In Proceedings of the 14th Conference of the Pacific Association for Computational Linguistics
(PACLING 2015), pages 209–217, Bali, Indonesia.

Shervin Malmasi, Marcos Zampieri, Nikola Ljubešić, Preslav Nakov, Ahmed Ali, and Jörg Tiedemann. 2016.
Discriminating between Similar Languages and Arabic Dialect Identification: A Report on the Third DSL
Shared Task. In Proceedings of the 3rd Workshop on Language Technology for Closely Related Languages,
Varieties and Dialects (VarDial), Osaka, Japan.

Jordi Porta and José-Luis Sancho. 2014. Using Maximum Entropy Models to Discriminate between Similar
Languages and Varieties. In Proceedings of the First Workshop on Applying NLP Tools to Similar Languages,
Varieties and Dialects (VarDial), pages 120–128, Dublin, Ireland.

151

Cicero D Santos and Bianca Zadrozny. 2014. Learning character-level representations for part-of-speech tagging.
In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 1818–1826.

Liling Tan, Marcos Zampieri, Nikola Ljubešic, and Jörg Tiedemann. 2014. Merging Comparable Data Sources
for the Discrimination of Similar Languages: The DSL Corpus Collection. In Proceedings of the 7th Workshop
on Building and Using Comparable Corpora (BUCC), pages 11–15, Reykjavik, Iceland.

Omar F. Zaidan and Chris Callison-Burch. 2014. Arabic Dialect Identification. Comput. Linguist., 40(1):171–202.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, and Jörg Tiedemann. 2014. A Report on the DSL Shared Task
2014. In Proceedings of the First Workshop on Applying NLP Tools to Similar Languages, Varieties and Dialects
(VarDial), pages 58–67, Dublin, Ireland.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, Jörg Tiedemann, and Preslav Nakov. 2015. Overview of the
DSL Shared Task 2015. In Proceedings of the Joint Workshop on Language Technology for Closely Related
Languages, Varieties and Dialects (LT4VarDial), pages 1–9, Hissar, Bulgaria.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level Convolutional Networks for Text Classifi-
cation. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 649–657. Curran Associates, Inc.

152

